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SUMMARY 

This is a study of feedback control for the stabilization of a peri- 

pheral jet ground effect machine (GEM). The study is limited to over land 

operation, to hovering and low forward velocities, where normal aerodynamic 

control surfaces are ineffective. 

Expressions for the frequency and damping of the heave motion and for 

the attitude moment derivative are derived, using the principle of momentum 

balance. The influence of physical parameters and scaling on these results 

is discussed. The differential equations of forward flight are developed 

and expressed. 

The results of a series of experiments on an eight foot diameter GEM 

! model in a hover condition are in satisfactory agreement with theoretical 

predictions. The experiments also show considerable damping of the attitude 

* motion. 

An attitude and rate feedback control system was devised, considering 

the adaptability of the human pilot, and the disturbing moments.  Pre- 

liminary synthesis brings out the significance of the moment control lag 

and the variation of the moment control effectiveness.  It Is suggested 

that open loop gain adjustments can be expected to provide satisfactory 

compensation for parameter changes, both in hovering and in forward flight. 



1 .  INTRODUCTION 

1.1.  Background 

Most low speed flying vehicles are either unstable or exhibit only 

marginal stability.  Two outstanding examples of vehicles with stability 

problems are ground effect machines (OEMs) and vertical take off and land- 

ing aircraft (VTOLs). Although it is a well-known fact that aircraft need 

not be actually stable (i.e. return to equilibrium after any disturbance), 

for satisfactory flying qualities it is necessary that any divergence in 

the motion following a disturbance be sufficiently slow so that it can be 

comfortably handled by the pilot. Many GEM and VTOL configurations are suf- 

ficiently unstable, over at least a portion of the flight regime, as to be 

difficult if not impossible to fly. Aerodynamic stabilization in many 

cases proves to be Inefficient. Another means for increasing the stability 

is the application of feedback control.  Some difficulty may, however, be 

encountered in the application of conventional techniques to automatic stabi- 

lization because of the rapid variation of the stability derivatives during 

changes in flight condition. 

The report which follows is confined to the problems of artificial sta- 

bility augmentation of peripheral jet ground effect machines. An Investigation 

of the literature shows that very little Is known about the dynamic character- 

istics of this type of vehicle. 

Attitude stability can be obtained in the GEM by aerodynamic means.  If 

the GEM is operated at a height above the ground sufficiently small compared 

to the diameter of the machine, it is inherently stable in attitude.  However, 

the operating height required for stability is generally incompatible with 

the height needed for operation over typical terrain.  The range of stability 



can be extended by using interior jets which effectively "compartment" 

the machine.  Since the individual compartments tend to exhibit altitude 

stability, the machine becomes stable in pitch. However, as shown for 

example in Reference 5? considerable performance loss results from the use 

of internal stabilizing jets. For this reason, it was thought worthwhile 

to investigate feedback as a means of achieving the desired degree of sta- 

bility with no significant loss of performance. 

The dynamics aspect of ground effect machines has been considered pre- 

viously in References 1, 2, 3 and k,  although not primarily from the point 

of view of feedback stabilization.  Reference 1 was only of a very prelimi- 

nary nature although feedback control was considered. The final results of 

the study proposed in Reference 2 were not available to the authors at the 

time of publication of this report.  Reference 3 considered only machines 

which had been previously stabilized by means of Internal jets, while Refer- 

ence k  considered only the heave motion. 

During the short period of time since widespread attention was first 

given to the GEMs, a large amount of work has been done. However, a number 

of problems still remain.  This is particularly true with regard to restor- 

ing moments and damping forces and moments, since most of the attention to 

date has been confined to predicting, and experimentally determining, the 

performance characteristics. 

A short review In three sections is given here of the work which has 

been done. 

1. Augmentation.' A study of the general proximity effect on nozzles 

was made by Von Glahn in April 1957• (Reference 6). Shortly thereafter a 

theory was presented by Chaplin (Reference 7) which assumed the jets to be 



thin and neglected the effects of viscosity. The theory was extended to 

thick, viscous jets in References 8 to 12. A qualitative discussion of the 

effects of vortices was given by Nixon and Sweeney (Reference 13). A large 

amount of experimental data, as well as results of experience with full 

scale machines, was given in the papers presented at the Princeton Symposium 

(Reference 1^-). The effects of vortices were treated theoretically In 

References 15 and l6. 

2. Moments. A theory for the prediction of moments employing thin 

jets was given in Reference 17, and was extended to thick jets in Reference 18, 

Several experimental investigations of the static moments acting on GEMs were 

reported In Reference 5- 

3. Forward Flight.  Experimental Investigations of GEMs in forward 

flight were given in References 19 and 20. 

Available theoretical and experimental data seem to be sufficient to 

allow prediction of the augmentation of a hovering machine with good accuracy. 

The situation with regard to moments, however, is not as good.  The theory in 

Reference 17 shows the machine to be unstable in attitude for all height to 

diameter ratios.  The theory of Reference 18 gives results similar to those 

observed experimentally. However, these results are tied to certain as- 

sumptions and the sensitivity to these assumptions has not been explored. 

In summary, actually very little Information about stability derivatives 

is available in the literature.  Since a fairly good understanding of the 

vehicle to be controlled is a necessity for a feedback control synthesis, a 

large part of our effort has been devoted to deriving expressions for some 

important stability derivatives.  The validity of the theoretical results has 

been checked by measurements, and the results are used in a preliminary syn- 

thesis of a feedback control system for stability augmentation. 

10 



1.2. Equations of motion 

If we attempted a general solution to the problem of describing the 

dynamics of the ground effect machine, a system of six coupled nonlinear 

differential equations for the six degrees of freedom would have to be 

solved. However, in order to concentrate on the dynamic problems which 

are most important from a practical engineering viewpoint, we are going 

to make simplifications while emphasizing those aspects which lead to a 

reasonable formulation of the control problem. Some of the factors which 

are neglected at this time may draw more attention at a later stage of 

development after the most Important controllability problems have been 

solved. 

The first in a series of simplifications Is the assumption that the 

longitudinal and the lateral degrees of freedom can be considered un- 

coupled.  The most obvious coupling terms are gyroscopic moments. A dis- 

cussion of the order of magnitude and the scaling of the gyroscopic coupl- 

ing is presented In Appendix A. The conclusion is that, except for single 

propeller ground effect machines with large specific loads, the gyroscopic 

coupling Is practically negligible; therefore it will be neglected In the 

present study.  Nevertheless, it should be mentioned here that the scaling 

of the gyroscopic coupling should be considered if the dynamics of a single 

propeller ground effect machine are to be investigated on a scaled model. 

There Is also a coupling of an aerodynamic nature between the rolling 

and pitching motion, due to the fact that both are coupled to the heaving 

motion in a similar way.  It is well known that the lift does not remain 

the same when the GEM Is not parallel to the ground; the lift is an even 

function of the attitude angle around any axis.  On the other hand, the aero- 

11 



dynamic moment at any attitude angle is also a function of height. The 

mechanism of the coupling can be described in a qualitative way as follows. 

Assume that the machine is at a certain roll and pitch attitude angle at the 

same time and that the roll angle is changed. This causes a change in the 

lift force, therefore, the e.g. of the machine moves up or down. The change 

in height induces a change in the moment around the pitch axis resulting in 

a pitching motion. Similarly, a change in pitch angle results in a rolling 

mot ion. 

The strength of this coupling depends mainly upon the slopes of the functions 

expressing the relationship between height and angle, and moment and height. The 

effect of this coupling on the dynamics is strongly influenced by the damping 

in heave. 

The even function L = x (Ö) where 0 could be the angle around any axis, 

has a flat maximum at 0 = 0. The change in lift with small deviations from the 

leveled condition has been shown experimentally to be very small.  (See reference 5 

and Figure 3). Experiments and theory (to be presented in subsequent sections) in- 

dicate a fairly high degree of damping in the heave motion. Considering also that 

at practical heights only small angles are possible, this coupling between the 

lateral and longitudinal degrees of freedom can be regarded as of secondary im- 

portance and is neglected in the subsequent analysis. 

Other coupling, terms may appear due to an added fin, tail or auxiliary 

thrust.  Such couplings are not considered here because we are concerned pri- 

marily with low translational velocities where the ground cushion exists and 

where the aerodynamic forces exerted on a fin or tail are not very strong. 

It should be pointed out here that the effect of these additional terms on 

the lateral-longitudinal coupling can be, and should be, considered carefully 

12 



in the case of any particular design. We intend to concentrate on the dominant 

stability problem of the peripheral jet ground effect machine at and near 

hovering. 

The above discussion, as well as experience vith existing full scale GEM 

models, indicate that most problems of stability and controllability appear 

even if only three degrees of freedom are considered:  the freedom in heave, 

in attitude around one axis, and in motion along the axis perpendicular to 

the attitude axis. The remainder of this study represents an approach to the 

analysis of the stability problems for the purpose of a preliminary synthesis 

of an automatic feedback system for stability augmentation. 

In order to make the mathematical treatment of our problem feasible, we 

will use small perturbation theory. This approach enables us to Investigate 

the necessary, but not sufficient, condition for stability of a nonlinear 

system; the system must be stable in the vicinity of any equilibrium point. 

This investigation reveals approximate quantitative information about the 

most important stability problems. The variation of the stability through- 

out the considered flight regimes will be visualized by means of root locus 

diagrams so that basic solutions to the feedback control problem can be 

suggested. 

Stability in hovering will first be considered, followed by a discussion 

of stability in forward flight. 

13 



2. HOVERING ANALYSIS 

2,1. Hovering equations 

As an approximation to the stability problem in hovering, we assume that 

variations in attitude are sufficiently small so that any lateral or longitudinal 

velocities which develop are quite small, and therefore forces and moments due to 

horizontal velocities can be neglected. This leaves us with two coupled equations 

in two degrees of freedom. Using the height, n , and attitude angle with respect 

to horizontal, 0 as perturbation variables, we can write the equations in linear- 

ized form, Laplace transformed with zero initial conditions. 

For heave: 

t-ir l?s'Msi)h - fi6 
Ö5n ST (i) 

and for pitch; 

ÖM   u+(^+^ls+ Is2 ^ Q   =      dM    o 
^vT h + ^ öö ^   ö¥ s + ■LS  /> e öSe b< (2) 

dy and SB    represent the throttle and the moment control input 

respectively. 

For stability Investigations only the homogeneous equations need to be 

considered. After dividing by the weight, W , we can write the heave equation 

in the following form. 

J_ Os-; 

where       Pu =      L /g 

S   - f._   ah )^  +   -k ■öPu 
-ÖQ 

e = o (3) 

ih 



The moment equation can be normalized by dividing by L_D where D can be 

any suitable dimension of the GEM 

^ up ^   ^     öe ö© ^ ^ 

In effect, this procedure serves to define the moment coefficients. 

Let us consider now a special but practically very important case. 

For equilibrium at the leveled condition ^ '~/^©  = 0 since  Pu   is 

a smooth even function of 0 .  Also, ( ÖH / ^^  )      =0 since, because 

of symmetry, the moment at 0 = 0 is zero independent of the height. There- 

fore, in hovering with zero attitude angle, and practically also at small 

attitude angles, we have two uncoupled second order equations of motion for 

the two degrees of freedom in heave and attitude. This enables us to investi- 

gate the stabilities of the uncoupled modes as functions of height and this 

simplified approach will lead to basic suggestions for the solution of the 

stability problem in hovering. The effect of dynamic coupling and forward 

flight, will be discussed subsequently. 

2.2. Application of momentum balance to GEMs. 

2.2.1. Assumptions.  In this section the momentum balance approach is 

used to derive the most important stability derivatives in hovering.  The 

vortices which occur because of viscous effects are, to a certain extent, in- 

cluded in the analysis by lumping the averaged pressure drop under the base 

into a "base efficiency factor", Y)\_      •  The momentum balance approach seems 

to be adequate to show some of the most Important mechanisms Influencing the 

stability.  The relationships to be obtained are also very useful in estimating 

the effects of scaling on the stability derivatives. 

15 



The momentum balance approach has been used previously by numerous authors. 

The method given here differs from previous presentations in that basic relation- 

ships are derived using only the momentum balance approach. Actual numerical 

results may differ considerably depending upon the assumptions which are made 

about the jet.  In the following presentation different assumptions about the 

jet may be taken into account by making appropriate substitutions. 

Some fairly general relationships concerning the base pressure and the air 

flow at the periphery of the base can be deduced from the assumption that the 

pressure difference at the periphery is kept in balance by the sum of Jet moments. 

Following Tulln (Reference 25) we distinguish three different regimes. We shall 

characterize these regimes for unit length of the periphery, without specifying 

any method of determining the jet momentum. We shall assume that the radius of 

curvature of the periphery is large compared to the height of the machine above 

the ground, i.e., we assume the flow at each point of the periphery to be two- 

dimensional.  (Three-dimensional correction will be made later.) We shall also 

assume the flow to be incompressible and inviscid„ However, viscous losses will 

be considered in the form of efficiency factors. 

2.2.2.  Balanced regime.  In the balanced regime the jet from the peripheral 

nozzle seals off the base area. At the peripheral element under consideration, 

air is neither entering nor leaving the base area. 

1 T 
i 

ß fib 

7  7  7  7  7  7 T 
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For horizontal equilibrium over a segment of the periphery of unit length, 

where     n,  = the height of the nozzle section above ground 

Tb = momentum of the jet leaving the nozzle 

übi = final momentum of the jet 

Y\j  =  a jet efficiency factor 

If the base of the machine is parallel to the ground, then ^ = ß0 

where  ß0 is the jet inclination angle of the machine. 

Equation 5 can be normalized by dividing by the jet strength out of 

ground effect. Using Bernoulli's equation 

J^ = ^t v0
z = atPT ^ 

Dividing (5) by (6) we get 

R,..  v.   ._  ,-r.      „   -r... (7) 

Using a bar to designate normalized quantities this can be written as:s 

(8) 

where the length is normalized by the nozzle width and the difference be- 

tween the initial and final jet momentum has been neglected. 

IT 
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2.2.3. Underfed regime.  In the underfed regime air is flowing out 

of the base area and the momentum of the escaping air must be considered, 

7 /     / 7 7—7 7 7 7—/ / F 

Using the subscript t>- for the underfed regime ve can write for the 

horizontal equilibrium 

(9) 

Here 3u.z   is actually a notation for the normalized change of momentum 

rather than for the jet momentum. 

For a leve3.ed machine again   (3= (^o   ;   if the base is at an angle © 

to the horizontal^  (3, — Q0 —  ©   ,  The mass flow of the escaping air 

must be determined from an additional equilibrium condition for the entire 

base area. 

2.2,^.  Overfed regime.  In the overfed regime air Is flowing into the 

base area.  This air must be supplied by part of the nozzle jet.  This 

weakens the total jet momentum due to diminishing of the mass flow which 

is turned away from the base area and due to the momentum of the air flow- 

ing Into the base area. 

18 



7—7—7     TT 

For horizontal equilibrium 

\  PBO^ =   HT (To /^ß+ To. - To^) 
(10) 

where again 3 = ßo — © . The mass flow of the air flowing into the 

base area must again be determined by means of an additional equilibrium 

condition for the base area. 

Using the basic concept of these three regimes, equations for forces 

and moments can be determined in a form still independent of the particular 

choice of jet theory, but nevertheless indicating the basic relationships 

and important factors.  It should be noted that the basic concept can be 

used also for other than simple peripheral jets. 

2.3. Lift and augmentation. 

The over-all lifting force acting on a ground effect machine with a 

single peripheral jet can be expressed In the following general form: 

(U) 

'S 

L =  ^ Jl   T oe^ ß   dLfl- + irju J   pB as 

19 



where ^J Is the jet momentum per unit length of the periphery, ji   is the 

length of the periphery and o Is the base area enclosed by the jet.  In 

a leveled, balanced condition the height of the jet is uniform along the 

periphery and  p^ Po   ;  the base pressure is considered uniform over 

the whole base area. 1^ ^  is an efficiency coefficient expressing the ex- 

perimental fact that due to vortices and other losses only part of the 

computed pressure contributes to the lift.  For the leveled balanced 

condition 

Generally both  Jb  and  FQ are functions of the height, \n  • We 

Introduce now the specific load P»_ =   /s 

P^cv.)-nJ3bcv1) | c^ßo-t-HUPBCVO (13) 

For determining the augmentation factor the reference is the specific 

lift produced by the same total head out of ground effect- with Po = O 

and the same jet efficiency factor, H^   ■  Out of ground effect  Fg " O 

and with Equation 6 the augmentation can be expressed as 

^ ;    anT   -fv    It = 
dM 

Too an-r ^   PT 

20 



or 

A^- ±^ P.-  Jb c^^ +   -*- PB <«' ^QjO.  ^    -D-  /"   JUIT0- 

it 
where  Oo — -=—   is the important physical parameter expressing the 

ratio of the nozzle area and the base area, and the "bars indicate the 

jet momentum and the base pressure normalized by <> IT t  and  Vx 

respectively. 

We can also express the "normalized specific load" as: 

    (-i£\ 

Pu=   a HTOL. Tb c*^-ßo +   n»_ PB 

2.k.    Heaving dynamics. 

2.^.1. Restoring force in heave. The equilibrium height, nc , is 

determined by the condition that the lift at this height in the leveled, 

balanced condition be equal to the weight V/ . 

Pue = ^ = nT ^b CM 4 ^ ßo-^u PB Oe)      
(17) 

A deviation from the equilibrium height gives rise to a restoring force 

because L j* W if V) ^ Vie • 

If we linearize for small deviations we can write 

dL n 

21 



The total derivative is used from here on since we are considering freedom 

in height only. 

The specific restoring force,which is in effect the normalized "spring- 

constant" in heave,is defined as 

K — -   ^fc- 1 (19) 

= - W x^i-^^L We 
The derivation "below is based on the following physical considerations. 

1. Among the related variables n ,     Pa  , Jb  there is only one 

Independent variable. 

2. With our assumptions the jet is determined uniquely by the normal- 

ized base pressure,   Pg   , therefore 

cLTb _    4_3jb     <LPB (20) 
dlh   "    dLPe       d-h 

d P The change in base pressure with height,    s   , can be determined from 
AM 

Equation 5 by differentiating and substituting the above expression (20). 

(21) 
dPe _ _ Pe 8 
c^v. h      i- ni   ^L,Y/^^ 

APe 

22 



Substituting Equation 20 and the above expression into Equation 19, we get 

K- nu^ 
, + ni  a. it X „_ fi 

and normalizing by  Too - A t r-|-    with   OL.= *-"/$ 

K = ̂ 17 
i dT, + Si xfe ^^ ^^ 
,.t dT 

dp, 

(22) 

i- f —h 

This equation also serves as a definition for C^» and C \-, 

The fraction in which  _ ^ 

the denominator indicates 

appears both in the numerator and in 

the influence of the change of jet 

momentum with base pressure.  If the jet would not change with the base 

pressure, fg  , the spring constant would be simply, 

K= rv (23) 



l!he correction term in the denominator expresses the fact that this full K 

cannot develop. For example, downward motion from equilibrium results in 

some weakening of the jet and less restoring pressure can develop than with 

an unchanged jet. The correction term in the numerator expresses the change 

in the direct contribution of the jet to the lift. 

2.k..2.    Damping in heave.  If the machine is moving downward with a 

velocity, in ,  air must leave the base area and if the machine Is moving 

with an upward velocity, air must flow into the base area. Damping forces 

arise because of changes in the over-all lift at any height which occur in 

either an underfed or an overfed regime.  The mass flow leaving or entering 

the base area Is determined by 

m JL =   P Sh 

where Tl is now the mass flow. 

For simplicity only the leveled condition is considered. Here the jet 

is uniform along the whole periphery. 

2.4.2,1. Downward velocity. While losing altitude with a velocity 
o 
n -^ O , the escaping air forms an additional jet with momentum  Tu. 2. 

over a unit length of the periphery, resulting in an underfed regime. 

Because of the leveled condition,  p= Po   .  Indicating the changes 

from the balanced condition we obtain from Equation 9 

— (Peb-t ^su.)^ = nT[(Tb-v^T^)(^ A^^+Tu.x]     (25) 
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We get the pressure difference due to the escaping air if we subtract 

Equation 8 from Equation 25. 

1  rib» T _ yTr- ( . ^  s.~a\^   T"..- (26) 
^Hr 

APBU,K.= ATU, ( \ -^ ^n(3c)-^ 3u.a 

_  dLT, 

The predominant term on the right hand side, Jmrz.     ,   indicates a 

pressure increase.  A Ju-  arises because the mass flow at the nozzle 

is a function of the base pressure.  An Increase In base pressure causes 

a decrease in mass flow, therefore .ATUL,  is a negative number.  Solving 

Equation 26 for  A PQUL. we obtain. 

AP, eu.- 
^HT     Tu.z (27) 

where Oy-, is the same as defined in Equation 22. 

Differentiating the specific lift, Equation l6, and using the base 

pressure change expressed by Equation 27, we obtain the following ex- 

pression for the normalized damping force, 
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<^ c**.ß0 + ^)Ärpe ^ A R. ^= (A nT ex "^i Co4. /6o -»- HL.) APe 

Cb 
where   —     has been defined in Equation 22, 

The additional momentum,  Ju-a.  , can be determined from the 

mass flow. Equation 2k-,   and Bernoullll's equation 

In normalized form 

(29) 

T^ = " 1 5tPT \[v^ ^ = - i NTS 
s   ^      rr-rr; .  .nr A (30) 

8
      IVToo 

where    1^700=     \ ^—^ ^s  ^^ie   Je^ velocity out  of ground effect. 

Substituting   into Equation 28 

  ,      T (31) 

2.4-2.2. Upward velocity. While gaining altitude with a velocity^ 

n > O ? air is being supplied by the jet into the base area, resulting 

in an overfed regime.  For the leveled machine, jo =   Po  .  Indicating the 

changes from the balanced condition. Equation 10 can be rewritten as follows; 
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■J (PBk>+ A Pßo) V! = Hj [(jb + A^) A^n (3o ^ To, - To*]    (32! 

We get the pressure difference due to the flow into the base area if we 

subtract Equation 8 from Equation 32: 

~k AP8oV. =   y\T   \_ATo A^o -(Tbi-To.)-   T02J 
(33) 

We caji arrive at a simple approximation to the right hand side as follows; 

Tbl =     m0 IKToo      where ATe •~     \~ T 
{3h) 

Toz =   Tn Moz        where (VJoa^ i 
»(ftr-Pe) 

7° 

Joi" (rrf\o +Amo-1^) i^- 
where 

00 Atr»oK3-oo= ^3ot = A3C 

If we  normalize by    Joo3 lnr>oo M'co      where   moo   is  *he mass  flow at  the 

nozzle  out  of srround effect we get 

Tbl ~  Joi   = 
rp -A Jioi 
^oO Too 

S*     rn - ATO 

and 

T 02 =   ^    \ \ - PP 
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Using again ^3" =   — A Pß >  we find by substituting into Equation 33 

ZPVO'Z-^QJ.   rn (l + vli- PB ) 

where CL^, is the term as defined in Equation 27, and using the mass 

flow Equation 2k 

Ap6^ -Ir£ -t i^h^)ko    ;>0 (36) 

The change in the specific lift describes the normalized damping 

For determining a damping factor for comparison with experimental data we 

consider the average damping force acting over a complete cycle of oscillation. 

i li^i - i^il- -Sr^rC1 * HwF^) ^    (38) 

We make an error of less than U1^ for    (M   < Pg <0.S   ,   i.e.,   for all 

practical values   of      Vg        ,   if we write 
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j-   [lAP^U   |AP.„|]=     Ä.33    «^Lx    I     ^   lil (39) 

This   is  an expression for the normalized average damping.    We  obtain the 

actual damping  in terms of pressure  if we multiply both sides by    v^ 

IJAPUU  +    \APUJLM>\][   = (1+0) 

n»_yhr   et, Ü5 IM 

2.4.3.  Frequency and damping ratio of the heaving motion.  The transformed 

differential equation describing the heaving motion with the coupling term 

neglected can be written as (See Equation 3): 

^L   ckP- c.      JäL   CLR. >- {kl) 

(?Z*\^*- 3L 
dLh )ü. 

Using Equations 19 and 22,   the undamped natural frequency is, 

U3H = i ^J 
Hu Pee eb 

PL. Ch 

(42) 

N 
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We can determine the relative damping ratio, ^"n  , from A  5Ht^>H= -^ —-?= 
Pi_    Oh 

Expressing    sii-        as the coefficient  In Equation 40 

_' (43) 

The influence of scaling is an increase of the damping ratio with the 

square root of the linear dimension.  The volume of air which moves into 

or out of the base area increases proportionally with the base area, whereas 

the "nozzle" area through which this air moves Increases proportionally with 

the length of the periphery. 

The damping ratio also varies inversely with the square root of the 

specific load, ri_  •  The total pressure,  r-j-  , must increase with P^ 

and the base pressure,  rß  , is proportional to ^r    .    Therefore the 

variation of the velocity of the air moving into or out of the base area 

is reflected in the  '{^ factor, 

2.5. Pitching motion. 

2.5.1. Moments. The physical basis for the derivation of an expression 

for the moments acting on a ground effect machine as given below, is the same 

as the one adopted by Lin (Reference 18) and Webster (Reference IT)«  The 

following derivation is different, however. In the respect that a more general 

result is obtained so that the effects of different mechanisms and various 

assumptions can be discussed. 

Consider that the machine is in equilibrium at some small attitude angle. 

The experimentally observed flow picture is similar to the one shown in the 

following Figure. 
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The cross flow is observed experimentally and can be explained by con- 

sidering the balance of pressure and momentum forces. When the machine 

is tilted to the right, for instance, the force due to the base pressure 

has a component parallel to the ground. The machine must thus exert an 

equal and opposite force on the fluid mass under the base.  In order for 

this fluid mass to remain in equilibrium, the pressure force must be 

balanced by a momentum change plus the frictional force at the ground. 

Since the skin friction force is quite small, the pressure must be bal- 

anced mainly by a momentum change which can only be brought about by part 

of the air from the low jet flowing toward the high jet. 

The losses due to viscous effects including the pressure drops caused 

by the vortices are lumped into the lift efficiency factor, ITj^. .  Diff- 

erential pressure changes caused by the difference between the vortices at 

the two ends are considered.  The result of the derivation will show that 

these assumptions are sufficient to explain the nature of the moment derivative. 
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The basic relationships will be derived for a two dimensional flow 

and the results will be later modified for application to a three 

dimensional machine. 

'VTHS. 

Let us take a section of the vehicle of unit width and denote the 

distance between the two jet sections by ä f  .If the base is inclined 

with respect to the ground at an angle,0 , as illustrated in the above 

Figure, there is an underfed regime at the high end and an overfed regime 

at the low end. The mass flows into and out of the base area must be. equal. 

Our unknowns are   AP,Bi_= Pei-- ^ao-  »   A PßW = Pen- Fee-, 

and the mass flow,nn .  We have two momentum balance equations for the two 

ends; the third equation is provided by writing the horizontal momentum 

balance equation for the total base area.  Linear pressure distribution 

along the base will be assumed. 

For the high end we can write, using Equation 5, and the notations of 

the above Figure. 

p8H v^ = q T [^H  ( ^x/o «, l) ■+ TMZ] 
(kk) 
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-1- (Pee"«- A ^H)( he + ^ ©)- HT\(^b^ ^H) D +A^(Po-e)I 

+ JHA -t 3"b + ^ TH IJ 

We now make small angle approximations for Q and neglect the second 

order terms 

---_ -    —„ _— 06) 
Pec Vie-i-  Pee r©-*- W^-PBH +- r © APeH = 

= ^n^- LC^b +AJH)( I +/^ (3o) - (lb -+ ATH)ö CA4- ^o +- ^"HZ J 

Subtracting the equilibrium equation for the  leveled, balanced condition, 

PeaW   =    ^2. V\T    ^   (y+yUA>^o) and substituting   ATH =   J^ A PBH 

we get 

B 

Rearranging  and using     C^,    as  defined  in Equation 22  the  differential 

where    ^=    P +  Ä^T     Jp;  C^ P 

momentum balance  for the high  end can be  expressed as 

(chU.+ r'e)APBw= ^8) 
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where YU ±S  the normalized cross flow and o< T^ul.   is the normalized 

velocity of the cross flow at the high end. 

The left hand side of this equation expresses the pressure changes. 

The three terms on the right hand side indicate clearly the three major 

factors contributing to the pressure change. The first term is due to the 

increase of the nozzle-to-ground distance, the jet momentum can balance 

only a smaller pressure over a larger area. The second term is due to 

the change in jet incidence angle at the nozzle with respect to the ground, 

decreasing the horizontal component of the jet.  The first two terms are 

of stabilizing nature, the third term which is due to the cross flow is a 

destabilizing term. 

For the low end we can write, using Equation 10, and the notation of 

the Figure on page 32 

-±- Pm. W.= (Tu /u/n/Su-v Tul - Tui)^ 

or 

=   HTT \]jto-e ATU) /u/n ( ß0^ ©) ■+ Jui - Tuz ] 

We perform a sequence of steps similar to the manipulation of the equation 

for the high end, conibined with the steps taken previously to express the 

conditions for the overfed regime. 
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(V»e- r/e)A PBL (50) 

= Pee ^ ©-f 2. Hx L J^  ( I+/UAr>/3o) A PBuir  1^0 otrt-ßo - ^-Tu2 J 

The final form Is  similar to Equation 37« 

(Gh Vie- r'e) ^ Pei_ (51) 

= Pee re + ä r|Tl-be ceo-ßo- a HT ^ (» ->• "^i-^ 

The physical meaning of the terms has been described following 

Equation 48. 

The third equation expresses the horizontal momentum balance over 

the whole base area. All losses in the base area including the pressure 

drops due to vortices are averaged and included in the lift efficiency- 

factor V^l^ .  Assuming a linear pressure distribution under the base and 

neglecting the friction forces due to the cross flow, we can write for 

small 0 

2 
[f&z.  + ^ (^PeHH APeu)] p.r 0 = 

(52) 

=   HTL^H /L«Jn|3H - Tu A^Pu-v   3HI-*■ 3W - J^ 
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and making similar steps as before 

- y\-z [C^b^-A3H)(/wn(3o- ecx«. (3)-(Tb-yATu)(/UA^o+ ©ow^o) 

■+ Tim ■+ Twa.-Ji_," 

Substituting Tb - T»_, •=   rn-ATL.; 3HZ* m NTni ; 

dLTb 
and a   J?» C^A^jSe)« he ( i-eh) 

We arrive  at the  following  final form of our third equation 

Cnur'e - (» -C^helApBH + [n^v^'e + 0 -C^e]APßu   (53) 

= -^^L^Pee r 0-4- nTTbe cu^- fio^ 9.^ rr\ { \ + fr^i^ 
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Since the moment will be proportional to A Pev-* — A PSL. 

it is advantageous for the calculation to choose this as one of the 

variables. Multiplying Equations hQ  and 51 ^y ^l(_  and writing their 

difference and their sum we arrive at the following set of equations. 

HuChW (APSV4-V^PBU) +  ni-r'e (APBH-APBU) 

i- 5. ^T Ylu r^   ( V    -t-  rO-ui -   (VTHl -V 0( NTL-X)    = =    o 
(5^) 
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The solution for     A Pen — A Pei_ can be expressed in the following 

form: 

APew-Apeu * (55) 

We wish to determine the moment derivative dLM 
dL9 at 0=o. 

This restriction is justified because experiments indicate that «IM 
a© 

is fairly constant in the vicinity of zero degree. Therefore we need to 

determine only 

4=-    (APBM- ApeL.)\      =  -^ = 
G3 

4j^>. Pge r -»• a HT Tb CJ^- ^o)  ^ui (\-op - 0 -VK) Peo r (^ + IVTHI) J 

The moment acting on a segment of unit width is easily derived as follows 

fe+Afki. 

-><- 
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Assuming linear pressure distribution. 

Integrating this gives*. 

We normalize by ^L0 = 4-P|_r2   where L is the lift acting on the 

segment and the area is   o = 3. P . The moment coefficient of our two 

dimensional segment is 

CM = ^U"r5= -^-?>_OPBH-APSU)= ^(APBM-AP0U)     (58) 

The moment derivative at ©=0  is 

-4 £ (HuPete-t-AHT% T-CM-Mivr'-xCx-oO-Ct-V^ Pee. (\-vrM2.) 

■«■There is an additional moment^ the change In jet momenta multiplied 
by their moment arms.  It can be shown that this moment is negligible 
as long as r/t » » 
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Recognizing that  in     Pu = A T^, l^j     Q_  c^ert^    Bo  ■+   Hu ^Bc an<i that 

at » for our  segment  OL=   « -=-   , we can write the moment derivative in 
ar» P 

the following form: 

ACH_ 
de 

(60) 

<c>  h e 

This result clearly indicates some of the influences of different 

physical parameters and assumptions on the moment derivative. The two terms 

in the numerator of the coefficient of   /fche   are of distinctly different 

origins. The positive term —^^ —■   could be called a cross flow variable, 

The parameter  KTLZ    is the normalized velocity of the inward flowing jet 

at the low end, and it can be approximated by  IVru2.=  v~ Pee      since 

this jet is flowing into an area where the average pressure is  i B   .  As 

to  to'H'Z.   the picture is not so clear.  We know that the mass flow must 

be the same as that of the inward flow at the low end and, therefore, the 

change in jet momentum at the high end is determined by the change in velocity 

of the outflowing jet.  Because of dissipation, the cross flow will not have 

the velocity   KTuX   when it reaches the high side . We designate the 

velocity of the cross flow when it reaches the high side by c* lO'u'i 

1+0 



where   0(      is  a parameter which can have any value between  zero and one, 

Using BernouiJ-li's  equation,  we then find that the normalized velocity 

of the cross  flow outside the base  area    fWH2.     is: 

hJ Ha Pe-»- o«2" ( \- PB) 

When there   is   complete  dissipation,        oX =   O 

minimum estimate  for     IVTHä 

and we   obtain the 

to-H2 =     fPk 

If there were no dissipation CX     would be equal to one and this would 

correspond to expansion from the total pressure to the ambient pressure and 

would give 

KJH^ = I 

The quantitative effect of different values of 0{       will be shown later. 

The positive "cross flow term" is destabilizing.  If the other numerator 

term were zero, this term alone would make the ground effect machine statically 

unstable at all heights. 

The second and stabilizing term could be called a "base efficiency term." 

The ( \ —  f}i_ ) factor indicates that this term would vanish if there were 

no losses under the base.  We have incorporated In 10j_  all losses resulting 

in a pressure loss, including the averaged pressure drop due to the vortices. 

Therefore, we can state that, In an Indirect way, the vortices provide the 

source of a stabilizing mechanism. 
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We have not considered any differential effects of the vorticesj but 

such effects can be expected to be of secondary importance if our assumptions 

lead to a good quantitative agreement with experiments. That this is the case 

will be shown later. 

CLTB As to the denominator the consistently negative  sign of the    =•       factor 
d P© 

makes the sum in the denominator always less than one .    tuy-^ \ \ —pi) 

T decreases as ne  decreases, so that their ratio is not expected to vary 

by any large amount. However, at very low heights Qa |ÜB    can be expected to 
d. re 

Increase,  thereby causing a decrease of the denominator and an increase in the 

dLTb 

factor is that it expresses the contribution of the changes in jet momentum to 

absolute value of the moment derivative. The physical meaning of the ~r*r 
oL Pa 

the moment. 

It is interesting to notice that both the stabilizing and the destabilizing 

terms in the moment derivative have their physical origin in the losses occurr- 

ing in the base area, according to the momentum theory.  If the lift efficiency 

factor,  l£.L.   , were unity there would be no stabilizing moment.  If the 

cross flow were not dissipated at all ( O = \   ), there would be no destabilizing 

moment.  Consequently, if no losses occurred in the base area the moment at ©=0 

as well as the moment derivative would be zero at any height. 

2.5.2. Three dimensional corrections. We now have to make an estimate of 

the correction to be used for the application of our moment derivative result 

to three dimensional machines. 

We shall normalize the moment of the three dimensional machine by dividing 

the total amount by  <J LR-j. = ä r^ S K2.  where L.  is the total lift,  o is 

the total base area and  H-2. Is the maximum half-length (half-width) of the 

machine.  As an approximation In the following derivation we shall neglect 
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the Xb ■term in the moment derivative, This term, which represents the 

direct contribution of the jet momentum to the total moment, is small at 

practical heights. Using the notation of the Figure shown below and re- 

ferring to the derivation of Equation 59> we cari write 

JLC M 
dLO    13D »PcSR, i: si dr. 
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UP^SRz 
-Ri he   d Pa  x ^   ^       ( + (v5-MZ 

r\<?. 
J_     ^(?.R2 _^f M%) 
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M 

Comparing this result with Equation 59, the first bracket can be recognized 

as the two dimensional moment derivative, except for the omitted Ty»  term. 

The second bracket is the correction factor. Applying this result to the 

entire moment derivative, including the Tb  term, we can write 

13D ' 
where 

dLG    ISP 

r = — 

de 20 
(62) 

4-R.R3 tM ^) 
This correction factor is essentially the same as that obtained by Webster 

(Reference 17) who made somewhat different assumptions.  The factor A-Q,Rx 

is the ratio of the rectangle enclosing the periphery to the base area. 

The integral represents the effect of the shape of the machine on the 

correction factor.  For a rectangular machine I * t , for a circular machine I = .HS . 
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It should te considered that there is no practical need for a greater accuracy 

in estimating the moments. Therefore, our approximation to the correction factor 

by simply using the area ratio can be considered adequate for our purposes. 

2.6. Determination of base pressure and jet momentum. 

In all of the expressions given previously for frequency and damping of 

the heave motion and for the pitching (or rolling) moment, it is necessary to 

know the base pressure,  rg , and. the jet momentum, "Xß  >   as a function of 

the height, n , and the physical parameters of the machine. A number of 

different expressions can be obtained for Pg  and Jg depending on the 

assumptions made about the flow pattern or the jet momentum. We will briefly 

review three methods of obtaining these expressions which have been given in 

the literature. 

1.  Thin jet theory (Chaplin, Reference 7) 

The balance between pressure forces and momentum change for a level GEM 

can be expressed as, 

Pß OJl)= J ( ^ /^/3o) (63) 

where X.  is the length of the jet.  If the jet thickness, X  , is small 

compared to the height, \o  , we can assume the momentum, J ^ is constant 

and equal to Its value out of ground effect.  Then, 

where vj  is the velocity of the jet. Therefore, 

(610 

PB =  -^ =   a ( i ^ß}  =  ^ (65) 

which defines i)c 
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Obviously, this theory cannot be expected to yield good results near and 

within the height range where it gives PQ > |  and this range is within 

Oour range of interest. 

2.  Exponential theory.  (Stanton-Jones, Reference 12) 

In this approach we assume that Equation 63 is satisfied for a diff- 

erential element of the Jet, i.e., 

V^dP  = T (l i- /X^|3) (66) 

where 

T= pv^ at 

and  V is the jet velocity at the element under consideration. 

From Bernouilli's equation, 

_L_pv2 = P-r - P (6^ 

Combining these equations and integrating across the jet gives, 

PQ -  \ - C2-^ (68) 

Substituting; the Taylor series for the exponential, we note that this 

approaches the value given by Equation 65 for small f/.. 

PB-   ^-^   ^f3- — 
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3.  Uniform jet theory.  (Fuller, Reference 9i and Rethorst, Reference ll) 

If we assume that the jet near the machine has approximately constant 

thickness, then the balance of pressure and centrifugal force in the jet 

gives 

Using Bernculli's  equation and integrating gives, 

Q- (TO) 
o 

r,' 
PB = ,- ^ 

where 'Co is the radius of curvature of the outside of the jet and P, 

that of the Inside. Expressing these in terms of height, n , jet thick- 

ness, X , and jet inclination angle  ^3 o anci defining 

gives, 

Pe = \ - ^ (Ti) 

In the thin jet theory it was assumed that the jet momentum, Xtj , 

constant.  In the last two theories we can easily obtain the following 

expression for T^ (i.e., "3"^,  divided by 3"^  out of ground effect) 
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for the exponential theory and 

Tb= 4> (73) 

for the uniform jet theory. 

These three theories are compared graphically in Figure 1. It will be 

noticed that the last two theories agree quite well, and that the thin jet 

theory differs appreciably only for small height, n . The last two theories 

also follow very closely the exact, inviscid, incompressible solution given by 

Strand (Reference 28). 

The exponential theory is believed to be superior to the other two 

approximate approaches at very low heights. The uniform jet theory leads 

to zero jet strengths at o — |  . The derivatives of the normalized momentum 

cL T B with respect to the normalized pressure,   y   ,.which appears in the de- 

nominators of some of the stability parameters we have investigated can be 

found to be — ——•   with this theory. These expressions then tend to infinity 

as n  tends to one„ 

In the sample calculations which will be given later and compared with 

A  -To 
experimental results, we shall use the exponential theory. The term,  —zr5 

4. Pe 
is easily shown to be, 

a.pe      * 

For very small /y ( V| »I } 

L ^ 
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3.  DISCUSSION OF THE THEORETICAL AND EXPERIMENTAL RESULTS 

In the preceding section theoretical expressions were obtained for 

several of the important stability derivatives for the hovering GEM. 

The variation of these derivatives with changes in the important physical 

parameters are shown by means of a number of plots given at the end of 

the report.  These results are discussed in the following section along 

with results obtained from a series of experiments with an eight foot 

diameter GEM model.  The experimental set up and the procedure used for 

obtaining the data is discussed in detail in Appendix B. 

It was shown previously that^ for a vehicle initially trimmed paral- 

el to the ground, the heave and pitch motion can be considered uncoupled. 

We thus divide the discussion into two sections:  heaving motion and 

pitching motion. 

3.1.  Heaving motion. 

We previously obtained expressions for the variation of the lift 

force with height and rate of change of height and used these results to 

find expressions for the frequency and damping ratio of the heaving 

motion.  Figures i- and 5 are plots of the undamped natural frequency of 

the heave mot . ".  times the square root of the jet thickness (in feet) 

CiJm \^> (see Equation ^-2), as functions of jet inclination,  ßo  ; 

nozzle to base area ratio, Oo ; lift efficiency factor, M L.  . The 

general character of these curves is similar to the curve obtained by 

thin jet theory except for low heights.  In the thin jet theory, the base 

pressure becomes infinite as the normalized height  n (hereafter called 

simply the height) tends to zero which results in an infinitely stiff 

spring as height tends to zero.  Actually the base pressure cannot exceed 
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the total pressure, r^- . We see from Figure 1 that the two thick jet 

theories satisfy this condition. The base pressure also approaches the 

total pressure in such a way that the spring stiffness falls to zero as 

the height approaches zero. The spring stiffness for small height de- 

pends to a considerable extent on the derivative of the normalized momentum 

with respect to the normalized base pressure a-jüa   , which, as shown 

in Figure 1, tends to become very large and differs considerably for 

the two thick jet theories. For this reason, even the result for thick 

jet theory can not be relied upon for very small values of the height 

(e.g. \n   less than 1.5). We see from these Figures that the lift effi- 

ciency factor,  M i_  , has very little effect on the value of the natural 

frequency, CJ-)^ , and that this frequency is decreased as the nozzle to 

base area ratio, CL , is increased« Comparing Figure k  with Figure 5, 

shows that the heave frequency, COVA >   Is decreased for small height 

and increased for large height when the jet inclination angle,  (30 , is 

changed from 0 to ^5 degrees. The nozzle to base area ratio, Oo , cannot 

vary over too great a range due to consideration of lift efficiency.  (i.e., 

for efficiency the vehicle should operate at small values of height to dia- 

meter ratio, —  ,where D is an equivalent diameter for non-circular OEMs, 

and when this ratio is small the optimum nozzle to base area ratio is small.) 

The values obtained experimentally (experimental procedure described in 

Appendix B) are shown in Figure 6.  Also included in this Figure are the 

appropriate theoretical curves (  0^= ^/s '    /^o= 4-5 >       "t* I  ) 

and the thin jet theory expression -i.   ( a, is the acceleration of 

gravity), 
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The theoretical expression for the damping ratio (43) has been plotted in 

Figure 7.  It has been normalized in the form 2JH J X1
   (where rL is the 

specific lift or weight per unit base area and t is the jet thickness).  The 

nozzle width, t , represents the effect of scaling since ^H 1 ü-   is only 

a function of the acceleration of gravity, Q-, the air density, P    , and non- 

dimensional parameters.  Thus, increasing the specific lift (i.e., Vi_—  ^ ) de- 

creases the damping ratio, ^^ , but has no effect if the size of the machine 

is increased proportionally.  We note from this Figure that the effect of the 

jet to base area ratio, CL , is considerably greater than that of, po , and, 

/(U .  This dependence on OL is physically reasonable.  The experimental values 

obtained on the eight foot model are showrt for different values of specific lift, 

n_ , in Figures '6,   9 and 10.  The comparison with the theoretical curves is 

fairly good.  The magnitude is appreciably correct and there is no noticeable 

dependence on height, n .  Figure 11 shows how the damping ratio, JJM >   varies, 

for constant RPM, with specific lift, PL_ , as a parameter along the curve. 

Finally, in Figure 12 we have plotted a number of calculated and experi- 

mental values of the roots of the heave stability equation.  The variation with 

the height, r)    , is shown for several values of specific lift,  » u . 

3.2.  Pitching motion. 

In an earlier section of this report momentum considerations were utilized 

to obtain an estimate of the moments acting on a GEM.  In particular, an ex- 

pression was obtained for the slope of the moment versus attitude curve for a 

machine trimmed parallel to the ground.  Referring to this expression (Equation 60), 

we note that the two terms in the numerator depend on (j-^0 and (\-Ri.) respectively, 

so that if both the cross flow dissipation factor, O^ , and the lift efficiency 

factor, l^u  , are equal to one, the moment derivative is identically zero.  The 

behavior of the moment curve slope as a function of these parameters will be com- 

pared with the experimental results obtained on the eight foot model. 
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Recall that Equation 60 for the moment coefficient derivative,  . Jp   , 

shows that when (^ = I  (i.e., no dissipation of cross flow) this derivative 

is always negative. Thus, the momentum theory predicts that in the absence 

of jet dissipation, the GEM would be stable at all altitudes. We also see 

from the same expression that if the lift efficiency factor, 1^7 L.  , were 

equal to one (i.e., if the lift were actually as predicted by the momentum 

theory) then the GEM would be unstable at all altitudes.  Experience has 

shown that typical values of the lift efficiency factor, fj^ , are in the 

range 0.7 to 0.8.  (Reference 27, for example, suggests a value 0.8 for well 

designed machines.)  Since all machines tested to date are stable at a very 

low altitude and become unstable as the altitude is increased, the cross flow 

dissipation factor, (X    , must be less than one for the moment slope to give 

results which correspond with experiment. Figures 13 and ik  show how curves 

of the moment coefficient derivative, ^-3-^  versus height are affected by 

changes in the cross flow dissipation factor, 0(   •  Larger values of Q( are 

not included since they result in unreasonably high stability crossover points 

(i.e., values of height, ^n , where the vehicle becomes neutrally stable).  We 

see that the curves differ considerably even for small changes in CX   .     In- 

creasing (X , decreases the maximum of the moment coefficient derivative and 

increases the crossover point.  Figure l^- which is plotted for a larger value 

of the lift efficiency factor,  i| u , shows the same general behavior with 

respect to the cross flow dissipation factor, cX    ,   although the crossover 

point does not increase as rapidly.  Figure 17 in which the jet Inclination 

angle,  po , is zero, also shows the same behavior as a function of the 

cross flow dissipation factor. 



The behavior of the curves for different values of the lift efficiency 

factor, fli.     , is shown in Figures 18 and 19. These two sets of curves 

are drawn only for the cross flow dissipation factor Of"   O . The general 

character of the curves, however, is the same for all values of this factor. 

CLCM 
We note that the behavior of the moment coefficient derivative,   v ^ 

with varying height is quite different for the different values of the 

lift efficiency factor, tLL    .    As was pointed out previously, YXL.   repre- 

sents the fact that the actual lift produced by the base pressure falls short 

of that computed on the basis of a uniform base pressure. There are probably 

a number of phenomena not included in our simplified approach which could 

account for this decrease in lift. Probably the most significant of these 

is the vortices. Smoke studies of the flow under the base show that there 

are vortices near the jets under the base which reduce the pressure on the 

base below the pressure which acts near the center of the base. 

When the lift efficiency factor, Hi. , = I  the GEM is unstable for all 

values of height, n  . For smaller values of the lift efficiency factor, 

ILL   , the machine becomes stable for some heights, but the cross over 

height and the maximum unstable value of the moment coefficient derivative, 

JIK^   varies considerably for different values of the lift efficiency 

factor,  ■( (_   .On comparing Figures 18 and 19 we see that, for a particu- 

lar value of the left efficiency factor, the machine becomes stable only 

at a much lower height,  r» , when the jet inclination angle,  Po,equals 

zero and that the maximum unstable moment slope for this case is also con- 

siderably greater. 
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CICM Figure 16 shows how the moment coefficient derivative varies 
0-9 

for fixed values of lift efficiency He and jet to base area ratio, CL , 

as the jet inclination angle, (3o  , varies from zero degrees to 60 degrees, 

We see that the GEM becomes increasingly stable as this angle increases. 

From Figure 15 we see that the jet to base area ratio, CX , also has some 

influence on the value of the moment coefficient derivative  ^.^j^ . 
dl© 

This influence, however, is much less than the influence of other parameters. 

We now consider the experimental results.  Static moments were measured 

for different values of pitch (or roll) angle, 0 , at a number of height 

and power settings throughout the range available in the experimental set up. 

Some typical curves obtained in this manner are shown in Figure 21. For the 

lower heights the moment curve is very nearly a straight line and has a. 

stable slope. As the height is increased, the moments reach a maximum at 

some angle and then drop off.  The angle at which this maximum occurs be- 

comes larger as the height Is increased.  The moment curves were, however, 

nearly linear near zero angle for all heights. 

It will be noticed that in most of the curves zero moment does not 

occur exactly at zero angle. This can be assumed to be due to slight 

asymmetries in the flow field of the model. The slopes of the moment 

curves at zero incidence are plotted as a function of height, rl  , in 

Figure 20 along with the appropriate theoretical curves. A number of 

curves were computed to determine which combination of the cross flow 

dissipation factor, 0(  , and the lift efficiency factor, 'II., would 

give the best match to the experimental data.  It was found that the 

closest matches were obtained for H.»-  between 0.7 and 0.8 and for 0( 

between 0 and 0.2. All of the theoretical curves have a maximum for 
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a height, n , of the order of 10, whereas the experimental points seem to 

be increasing with height even at n equal to 11. We should note here, 

however, that one of the conditions for the theory to be valid is that the 

height to diameter ratio, -2^-  , not be too large, since for sufficiently 

L. 
large -L=_  the Jets on the right and left of the two dimensional model 

may come together.  In this case, the moment behavior may be quite dif- 

ferent from that shown by the present theory. 

For small values of the height, n. , the theoretical curves drop off 

much more rapidly than the experimental curve. This is probably due to the 

fact that one of the assumptions of the analysis becomes weak when the 

height becomes sufficiently small. This is the assumption that the total 

pressure in the chamber, r^j-  , could be considered constant. Also, the 

derivative of the normalized jet momentum with respect to the normalized 

base pressure, ^ ^b   , as shown in Figure 1, becomes very large at very 

small height, Vv. , which is probably unrealistic. These results seem to 

indicate that the theory is satisfactory for estimating the magnitude of 

the slope of the moment curve, as well as its behavior with height changes 

and changes in the various physical parameters of the vehicle. Accurate 

values of the moment slope can not be determined, however, due to the sensi- 

tivity of the results to the lift efficiency, T^j_  , and the dissipation 

factor 0( • Although these parameters can be estimated, they can not be 

easily determined accurately. Also, to improve the accuracy of the results 

for small height, \T_ , it would probably be necessary to refine the theory 

and include the effects of changes In total pressure and vortices. 
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Using the present theoretical approach It was not possible to find a 

satisfactory explanation for damping in the pitching motion. Experiments 

seemed to indicate, however, that there was a considerable amount of damp- 

ing in this mode of motion.  Results of these experiments are shown in 

Figure 22.  These curves indicate that the damping decreases quite rapidly 

as height, P , is increased.  The damping itself, however was relatively 

high in all of the tests. 

These results indicate that, for all but the very lowest heights 

tested, the characteristic roots of the pitching mode are both real, one 

lying to the left of the imaginary axis and one to the right.  If there had 

been no damping in the system the two roots would have been placed symmetri- 

cally with respect to the imaginary axis. The damping moves both roots to 

the left. In Figure 23 we see how these roots move along the real axis as 

the altitude is varied. The abscissa of the curve shown represents the 

position of the two roots along the real axis for a given height. As the 

height, T> , decreases, the divergent root moves toward the origin, pass- 

ing through the value zero at V» = 3.3^ while the convergent root at first 

moves away and then starts back toward the origin at about the same height, 

V)   at which the divergent root passes through the value zero.  The two 

roots come together at a position -7.3 on the real axis for  n equal to l.h. 

For heights lower than this the roots would represent a damped oscillation. 

This last point ia the result of extrapolation. 
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k.     FORWARD FLIGHT CONSIDERATIONS 

In considering the hovering GEM we were able to present a theory which 

predicted the most important dynamic characteristics of the machine's behavior. 

We were also able to present experimental results with which to check these 

predictions. For the GEM in forward flight the situation is considerably more 

difficult.  No adequate theory is available and the small amount of experi- 

mental results available are for fairly high free stream velocities (greater 

than 30 feet per second). For this reason, the discussion given here will be 

confined to summarizing what Is known about the forward flight regime and to 

making a few observations as to how this might effect the dynamic character- 

istics of the GEM in low speed flight. 

The character of the flow around the GEM changes considerably as the free 

stream velocity is Increased.  Depending on the dynamic pressure, the flow 

field will be similar to one of forms Illustrated as A and B below. 

A Low Velocity B  High Velocity 

If the freestream velocity is zero there is no cross flow when the GEM is parallel 

to the ground.  When the free stream velocity is not zero, the static pressure in 

front of the jet will be increased.  The difference between the base pressure and 

the ambient pressure becomes less so that, if the height remains constant, the 

forward jet need not be as strong.  Thus, part of the jet will pass under the 

GEM as shown in A above. As the dynamic pressure increases, the strength of the 
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cross flow will increase until finally all of, the jet passes under the base as 

shown in B above.  The velocity at which the flow pattern A changes to pattern 

B will be approximately determined by equating the free stream dynamic pressure 

to the base pressure. 

xra = B =   P«_ Ä   -TT (76) 

for small  h  .  This will be only a very rough estimate since the vortex 

ahead of the jet (shown in A) will influence the pressure there.  We neglect 

this effect.  Observe that the velocity at which the flow change occurs will 

increase with increasing specific load. Smoke studies described in Reference 29 

seem to indicate that the jet turns back under the base at a dynamic pressure 

somewhat lower th^:. the one corresponding to the base pressure. If, however, 

the specific load, rj_  , is very low, flow pattern B might be reached before 

the dynamic pressure is high enough to make control surfaces effective. We 

shall consider here only forward flight at low speeds where control surfaces 

are not effective. The speed at which the control surface becomes useable 

would depend on the particular design under consideration. 

In hovering we could, with sufficient accuracy, consider the motion to 

have only two degrees of freedom (i.e., forces Introduced by horizontal motion 

about the zero velocity condition could be neglected), we now have three de- 

grees of freedom.  For low speed flight of a level GEM, however, the heave 

degree of freedom is nearly uncoupled from the pitch and forward velocity de- 

grees of freedom.  There Is a small coupling because there is some lift change 

with either a change In forward velocity or a change in attitude.  The former 

lift change should be small If the forward velocity is sufficiently small, and 

the latter lift change should be zero (or nearly so) if the aircraft Is initially 
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trimned in a level attitude. Thus, in order to keep the analysis simple, we 

neglect the heave degree of freedom in forward flight and consider only the 

attitude and translational degrees of freedom. This does not imply that the 

variation of vertical force with changes in the steady state velocity will be 

small. However, such variation should introduce no severe dynamic problems. 

The perturbation equations describing the GEM in forward flight will 

thus be, 

|g-9-v m v-h|g v =    ^  St 

The rate term, -r-r-   Q     ,  which arises in conventional aircraft primarily 

because of a change In the angle of attack of the horizontal tail, can be 

neglected at low velocities. We then need to estimate ^—  , the pitching 

moment change with forward velocity; ^1?  , the horizontal force change with 

pitch angle; ^-^  , the horizontal force change with velocity; ^rr- > the 

moment due to attitude change; and -^ .  , the damping moment. We would like 

to know how these derivatives change with changes in the height, n , and the 

forward velocity, V 

The forces acting on the GEM in the horizontal direction are: 

a. the thrust from auxiliary propulsion 

b. the component of lift vector in horizontal direction 

c . the momentum drag 

d. the parasite drag (skin friction and form drag) 

e. the interference thrust (momentum recovery). 
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Additional drag will be encountered in flight over water; however, this 

effect will not be considered here. For a more complete discussion of drag 

forces acting on GEMs, see Reference 21 (Andu and Mlyashita). 

Thus, (with the X-axis parallel to the ground) the horizontal force can 

be expressed: 

y,=  T OC^L 9 -   LyUune-yuV- JPV
2
CDP+  T^ (78) 

where T = propulsion thrust 

L = lift 

M = mass flow 

v. pp = parasite drag coefficient 

»\r\X = interference thrust 

We shall assume that the thrust is constant and that 

© = 0 in equilibrium; thus TJOJT» © *= © 

\_~  Vv/  (machine weight) 

(—Qp  is approximately independent of both V and © 

Thus we obtain. 

(T9) 

Little is known about the interference thrust  < irJC  .  The following 

experimental curves from Reference 26 (Sweeney and Nixon), however, show that 

it is strongly dependent on velocity. 
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Andu and Mlyashita (Reference 21) have suggested the following mechanisms 

for this term, 

a. the disappearance of dead air at the air intake and nozzle exit 

(which was present in power-off parasite drag experiments), and the re- 

duction of friction drag on the base, reduce the parasite drag in a power- 

on condition^ 

b. the ingested and ejected air bring about a favorable effect on the 

external flow; 

c. the ejected air has energy in the form of total pressure, some part 

of which is converted to propulsive work in the process of expansion. 

Because of the present lack of understanding, the derivatives of this term 

will have to be estimated from experimental data.  From the curve shown above, 

it appears that the interference thrust decreases with increasing velocity.  No 

data is, however, available to estimate its behavior with pitch angle. 
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There will be moments acting on the machine for the following reasons: 

a. change in the base pressure distribution 

b. change in pressure distribution over the exterior of the machine 

c .  change In jet strength at the front and back of the machine. 

As soon as the GEM starts to move forward, the pressure distribution over the 

upper surface and around the exterior of the jet will change. One would at 

first think that the Increased pressure at the front of the machine would 

cause the base pressure just inside of the front jet to increase and hence 

give a positive nose-up pitching moment. Experiments, however, have shown 

that, for low velocities (corresponding to condition A above), this is not 

the case (see Reference 19). This effect would appear to be attributable to 

the presence of the large vortex at the front of the machine. Measurements 

of the base pressure distribution given in Reference 19 show that the pressure 

is lowest at the front of the machine and increases monotonically (although not 

always linearly) to the rear of the machine. This results in a negative pitch- 

ing moment. Because of the presence of the forward vortex and the fact that 

air is being drawn into the top of the machine, it would be very difficult to 

make any general statements about the pressure distribution over the upper sur- 

face of the machine.  It will certainly be considerably different from the 

pressure distribution of an unpowered machine and it will probably depend 

strongly upon the particular exterior shape of the GEM. 

Moments arising directly from the change in jet strength will be small as 

long as the jet area is small compared to the base area.  If we neglect this 

contribution of the jets we can then express the moment as follows; 

M= MEXT t -3- r2- AP (80) 



where 

IMEXT  = moment due to the pressure changes on the upper surface of the machine 

A P   = difference between the base pressure at the front and the back of 

the machine 

V    = equivalent radius of the machine 

rS    = a factor which accounts for the three dimensional character of the 

machine, as well as for differences between the actual and a 

linear pressure distribution. 

We are mainly interested in estimating the moment change with change of atti- 

tude angle,  -^  , and the moment change due to change in forward velocity ^-j   . 

We can express these as follows: 

ÖM   _      dMgKT  ,    _K_ ^     ÖAP 
00 b© 3 09 

(81) 

dv bv    ^    3 ÖV 

The damping in pitch, * , will probably not be much effected by the 

small forward velocities and will be considered to be approximately the same 

as for a hovering GEM. 

Because of the complexity of the flow under the base and across the surface 

of the GEM, the two derivatives ^tl ani±  Q£_l  must be determined for any specific de öv 
machine by experimental means. Using the results of some wind tunnel tests which 

have been made, hovrever, we can make some general qualitative observations con- 

cerning the manner in which these two derivatives can be expected to behave. 

Consider first the moment change due to velocity, *< '  . We can obtain 

some feeling for the behavior of this derivative from the results of Reference 19. 

The curves below show the qualitative behavior of the moment coefficient, v_\~i  , 

with changes In velocity for different heights.  (The notation Is ours and not 

that of the Reference cited). 
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i-.o, e= o0     /So- so' 

^f)- .01 

.03 

- .05 

The parameter ^-/J is defined to be; 

where J  is jet strength per unit length; Jc is the circumference; and o 

is the base area of the GEM. 

If we equate the dynamic pressure to the base pressure and use the above 

definition of ^-M- we find that. 

\       rj \    + /uun ß, 

C h A    V 
(82) 

I In the curves shown above, the sharp changes occur at a value of 7=— 

approximately equal to the one given in this Equation. Thus, the region of 

interest to us in these curves is only that small portion lying to the left of 

the sharp slope changes (i.e., to the left of the dotted line in the Figure). 
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We note from the curves that, for very small height to diameter ratio ,VD, 
the derivative -r—  is positive and that, for the larger values of yp , it is 

negative for small forward velocities and changes sign rapidly at some velocities. 

As  /D increases the magnitude of the slope, —*    , becomes greater.  This 

would seem to indicate that an accelerating GEM would experience rapid changes 

in dynamic characteristics if it were operating at sufficiently large value 

of  VD • 
We now consider the derivative 

DG 
Almost no information is available 

concerning the effect of forward velocity on this derivative In the region in 

which we are Interested (i.e., V^P^/2   < Pß  )• This is because of the fact 

that all moment information which is available comes from wind tunnel tests 

which cannot be conducted with accuracy at less than about 30 feet per second. 

In order to conduct experiments at lower velocities a facility such as the 

Princeton University Forward Flight Facility would be required. Although some 

ground effect experiments have been conducted in this Facility with a four foot 

model, none have yet included pitching moment measurements. 

Sweeney and Nixon (Reference 30) have stated that the Princeton 20-foot GEM 

(P-GEM) becomes statically stable in forward flight, although it is quite un- 

stable in hover (at full power with stabilizing slots closed).  They remark, 

however, that this might be associated with the fact that the P-GEM achieves 

forward propulsion by tilting the nose down, and that the stability Increase 

could be associated either with the slight height loss in this attitude or to 

the attitude itself.  Further tests with a leveled machine will probably be re- 

quired to determine whether the note of optimism in these results Is justified. 

However, one might conclude from these results that the effect of low forward 

Velocities will at least not decrease the static stability. 
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5. PRELIMINARY' CONTROL SYMTHESIS* 

5.1. Stability augmentation 

General experience with ground effect machines, as well as the theoretical 

results presented in the first part of this report, indicate consistently that 

a peripheral jet machine exhibits static instability in attitude well within 

the height range where it's performance is still economical. Stabilization 

by aerodynamic means, such as slots, has to be paid for in performance. 

Artificial stability augmentation by means of automatic feedback control 

suggests Itself as a powerful and convenient alternative. 

The development of the ideas concerning artificial shability augmentation 

consists of three steps: 

a. description of the uncontrolled system 

b. establishing design principles for the controlled system 

c. conclusions to be drawn from (a) and (b) as to the design of a 

controller, as well as consideration of the limitations of its use. 

In the following we shall consider first pitch stabilization in hover, and 

then discuss the effect of forward velocity on this proposed stabilisation. 

5.1.1. Description of the uncontrolled system.  In the initial approach we 

are going to consider only the attitude degree of freedom (pitch or roll).  In 

the  previous  discussion of the equations of motion, the attitude degree of 

freedom has been singled out as causing the most significant stability problems. 

Tests and theory have shown that the aerodynamic "spring" of this second order 

system varies from positive (stabilizing) to negative (destabilizing) values. 

With increased hovering height the negative "spring constant" reaches a rather 

flat maximum absolute value.  The practically useful performance range of the 

GEM reaches into the region of this maximum. 

•^Methods used below are discussed in servomechanism texts (e.g. Reference 31) 
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The transfer function for one degree of freedom in attitude can be written 

in the following form: 

Ac/T 
CS-S1)CS-Sa) 

(83) 

where 

s, = cop (-r+   (^r2) 

% = cop c- ^- f^f2) 

COc 
bM/se 

With no damping, ^=0 >        ^|--Sa  = Cj^C>   •    Tiie  effect of the 

damping on the location of the roots of a second order system with a negative 

spring is shown in Figure 25.  Our test results (see Figures 22 and 23) have 

shown the existence of fairly high damping throughout the useful height range, 

although no theoretical explanation for this phenomenon could be found. 

It seems reasonable to assume that the general behavior of the roots 

( S, and S2. ) would be similar to the behavior indicated in Figure 23, and 

that this would be independent of the size of the machine. 

The effect of scaling on the "undamped natural frequency", COp , is the 

following: 

GOc 
dM/ae Lr  Q/ONr    ^JK) 

M r 
(810 

1 

where TCL.      is the radius of gyration and ~=r-        " - is the form in which the 

moment derivatives are plotted (Figures 13 through 20). With M = —   and 
t 

NA/= L.  we obtain 
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This expression indicates a decrease in the natural frequency, COp , 

inversely proportional to the square root of the size of the machine, repre- 

sented in this equation by the nozzle width, X .  It should he noted that the 

explicit dimension, "L , in this expression reflects the size of the machinej 

the effect of the nozzle width on the moment derivative has been indicated in 

Figure 15 in terms of the nozzle area to base area ratio. 

In the damped case a change in the natural frequency, COp , means a pro- 

portional change in the distance, COp \ V + "S2   , of the roots from their 

arithmetic mean, — COp S" . The effect of a change in the damping ratio on 

the arithmetic mean is also proportional. Its effect on the distance between 

the roots is, however, less than proportional. 

Because of the simplifying assumptions made in the derivation of the 

moment derivative, and because of the lack of knowledge about the damping, 

we cannot expect highly accurate theoretical results. The use of the theo- 

retical results together with the experimental results, however, yields suffi- 

cient information for an approximate model to be used in a preliminary control 

system synthesis. We observe (see Figure 23) that the root on the left hand 

side does not change much throughout the useful range of heights. For practical 

purposes this root can be assumed to be constant. It is suggested that its 

value could be determined by assuming a certain damping ratio, ^VY, , at the 
  

height where  - ~   is maximum: Svm= ^prmx (,~ Sw-i- V *  "^m )    •    Th0 other 

root would be determined from the fact that the product of the roots is 

2. 
SvS-2.-    COp        .    Either theoretical or    experimental moment derivatives 



could be used to determine the natural frequency, COp .  In order to approxi- 

mate the mean value of the root, S| , a correction factor should be used, 

Sim = 1.2 Si rn  • Assuming £> j^ = 1 and using the theoretical curve 

(Figure 20) for the values lf7i_=-15 , o(-  O we obtain: COpma^^ A.(o 

at ir> = %      and S^— \3.3  . This value and the curve calculated for S2 are 

shown as dashed lines in Figure 23.  The effect of deviations from our somewhat 

arbitrary approximations will be discussed later. 

We return now to the expression (Equation 83) for the transfer function 

describing the uncoupled attitude response to a control input,  öe .  The gain, 

^c >   is actually an approximation to the transfer function which would accu- 

rately express the relationship between the control moment and the control input. 

This relationship varies with the height and generally may involve some dynamics. 

For example, if throttling of a portion of the jet, or inclination of the Jet, is 

used in order to produce control moments, a part of the moment develops immedi- 

ately in proportion to the change in jet momentum. Another part of the control 

moment, however, will develop only after the flow pattern under the base has 

changed. At the present time, no information is available on the magnitude and 

the lag of this part of the control moment which must depend largely upon the 

height above the ground as well as size of the machine.  This is one reason why 

a considerable margin must be Introduced in the design criteria. 

5.1.2. Design principles for the controlled system. Establishing reasonable 

and realistic performance criteria for the feedback control of a vehicle so 

vaguely understood as the ground effect machine, is perhaps the most intricate 

step in the entire synthesis procedure. The following discussion is actually not 

restricted to ground effect machines but is of broader validity. 

Our design criteria must be based on criteria for controllability by a pilot. 

In recent years considerable progress has been made toward a technically meaningful 
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formulation of the requirements which have to be met in order to permit a 

human pilot to perform satisfactory control.  (See References 22, 23 and 2k-.) 

This approach is based on the fact that the human pilot is actually an element 

in a feedback loop closed around the controlled alrframe or vehicle. 

Extensive experiments have shown that the response of a human operator 

in a feedback loop can be considered to be made up of two parts. One part 

is linearly correlated with the pilot's input; the remainder, usually called 

the remnant, cannot be linearly correlated with the input. The latter part 

is presumably attributable to nonlinearities in the pilot's action, to noise 

introduced by the pilot, and to the pilot's response to inputs other than the 

ones considered in the experiment. The following basic ideas have emerged for 

describing the human operator. 

a. In order to obtain the linearly correlated part of the pilot's res- 

ponse, the pilot can be replaced by a transfer function of the" form (see 

Reference 2k): 
A- i.a _ 

where 

L       =-reaction time  delay    J^ basically not  adjustable 

TNJ       =  neuromuscular  lag        J by the  pilot 

the pilot's equalization characteristic 

/Xp      =  the  pilot's  gain 

This transfer function is  a good approximation for a wide variety  of 

control tasks. 

b.     The  human pilot   is  highly adaptive.     He   is  able  to  change his gain,   /\p) 

his   lead time   constant,   T^     ,   and his   lag time  constant,    Tj       ;   over a wide   range, 
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Numerous experiments indicate that his efforts are aimed at providing a suf- 

ficient phase margin (^0-80 degrees) for the open loop transfer function so as 

to assure satisfactory closed loop control. 

c.  The pilot's opinion of the handling qualities of the machine is strongly 

correlated with the gain as well as the lead and lag time constants he must use 

in order to achieve a satisfactory degree of stability.  This opinion deteriorates 

rapidly when he reaches the limits of his capabilities. 

Some important deductions from the correlation between the pilot's 

opinion and the transfer function of the human operator are the following: 

a. The human pilot seems to have the best opinion of tasks in which only 

a pure gain and no lead or lag has to be applied on his part. 

b. There is a rather flat range of optimum values for the gain, Ap , of 

the pilot.  A considerable range (e.g., 1:8 in Reference 23) is acceptable. 

Too low or too high a gain are respectively described as a too sluggish res- 

ponse or a too sensitive control. 

c. The pilot's opinion is degraded if an increasing amount of equalization, 

especially lead, is necessary. Also the remnant (i.e., uncorrelated part of the 

pilot's response) is relatively small if little equalization is needed, and it 

increases with an Increasing effort on the part of the pilot to provide "good" 

control. 

d. The bandwidth of the closed loop determines the disturbance (gust) band- 

width for which the vehicle can be kept well under control.  Therefore, the pilot 

will tend to adjust his gain and compensation so that he can meet this requirement 

under given gust conditions . 

These extremely simple and reasonable principles have been chosen by the 

authors as a guide In determining design criteria for the feedback stabilization 
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of the GEM. No particular quantitative pilot transfer function can be identi- 

fied because only extensive flight experiments with ground effect machines involv- 

ing the evaluation of pilots' opinions of the handling qualities could justify 

such a caoice. We can, however, utilize the principles which have been outlined 

without being specific about the pilot's transfer function. This will be shown 

later. 

It is important to appreciate that the approximations Involved in the des- 

cription of the dynamics of the GEM leave a considerable amount of uncertainty 

in the synthesis of feedback stabilization. There are two possible choices in 

dealing with this problem. The difference in the principle of these two approaches 

is of the utmost practical importance. The nature of each possible choice is dis- 

cussed below. 

a. Adaptive control: We may specify some dynamic performance criterion for 

the vehicle which is to be controlled by the pilot.  This leads to the application 

of the adaptive control principle.  In this case, we make up our mind about a 

feasible optimum vehicle performance and keep checking the responses of the ve- 

hicle to its inputs. These are then continuously compared with the performance 

criterion.  Adjustments are automatically made to the gains of an inner feedback 

loop closed around the vehicle, as well as possibly in an equalizing network be- 

tween the pilot and the inner loop. 

Applying the adaptive control principle relieves us of the burden of finding 

how significant stability derivatives vary.  The price we have to pay is in the 

increased complexity of the feedback system. Also, we must face some possibly 

severe problems in connection with the dynamic stability of a fast acting adapt- 

ive loop closed around an inherently unstable vehicle. 

b. Nonlinear £ompen£ation^ If we know how the significant stability deri- 

vatives vary, we can make the adjustments in the feedback loop on the basis of 
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measuring or estimating the parameters which affect the derivatives.  If the 

parameters are very weakly or not at all coupled dynamically to the controlled 

variable, we have a nonlinear compensation which can be mechanized in a relatively 

simple way. These means do not ordinarily involve severe stability problems.* 

In the weakly coupled case, the success of a design depends heavily upon our 

knowledge concerning the relationships between stability derivatives and the 

parameters which change them. 

After sketching these two different approaches (adaptive control and non- 

linear compensation) let us return to our concept of the human pilot and see how 

the principles outlined earlier are involved In the choice of a design approach. 

The most significant aspect of the human operator is his adaptability. 

This property enables him to control a system with widely varying parameters. 

Our problem with the peripheral jet ground effect machine is that the range 

of stability derivative variations exceeds the range of human adaptability. 

If we knew nothing about the variations of the stability derivatives, our 

only choice would be adaptive control.  If we knew everything about them, non- 

linear compensation would solve the problem perfectly., We are, however. In a 

state between these two extremes.  The actual criterion for the choice can be 

presented in the following question: 

Do we have sufficient information about the variation of the stability 

derivatives so that the use of nonlinear compensation and feedback results in 

a system not exceeding the range of adaptability of the pilot for satisfactory 

control? 

*Stability problems may arise If a parameter is dynamically coupled to the con- 
trolled variable so strongly that an adjustment of the feedback loop based on 
this parameter must be considered as a nonlinear feedback rather than as a 
compensation. 
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The most Important point in this question is that we wish to make use of 

the adaptability of the human operator. If the answer to the above question is 

"yes", then there is no need to go into the design of a more complex adaptive 

feedback system. The answer is "yes." Material presented in this report pro- 

vides sufficient information for the preliminary design of a nonlinear compensa- 

tion for attitude stability augmentation by means of feedback control. 

The basic design principle Is now the following:  We endeavor to design 

a feedback loop to be adjusted at any height In such a way that the pilot is 

always confronted with a vehicle which is easy to control. We cannot achieve 

this goal perfectly for three reasons: 

a. We cannot predict very accurately the magnitudes of the stability 

derivatives. 

b. We do not know exactly what an optimum GEM configuration would be like 

from the point of view of handling qualities. 

c. We have made numerous approximations in order to simplify the system to 

a form suitable for mathematical synthesis. 

These three points may seem discouraging but we have two strong points to make 

in order to balance all the uncertainties.   f 

a. The range of adaptability of the pilot can absorb the uncertainties of 

points (a) and (c) above. 

b. Since we cannot expect to hit the center of the test pilot's range of 

adaptability, provisions may be made for adjustments of the feedback gains during 

test flights. Results from these test flights can then easily be in-orporated 

into the automatic compensation scheme. 

5.2.  Preliminary design of a feedback system for attitude stability augmentation. 

Up to this point, our effort has been concentrated on simplifying the system 

while keeping the most significant stability problems in the simplified model, 



and in establishing reasonable and practical design principles for the feed- 

back system. 

According to our previous discussion we are not going to consider any 

lead or lag contributed by the pilot, but rather leave his ability to provide 

such contributions as a safety margin which can be expected to absorb inaccu- 

racies in the feedback synthesis.  It is important to keep in mind that the 

primary goal of the pilot is to steady the attitude. The use of attitude 

control for maneuvering is not very efficient. Therefore, the task of fight- 

ing disturbance moments is strongly emphasized. Such moments are caused by any 

change of the center of pressure under the base. Experience indicates that 

small changes of a random nature always occur. At heights where the machine 

is statically unstable, this is sufficient to initiate an exponential divergence. 

Additional disturbance moments are caused by gusts. 

At this point we can consider three basic feedback configurations. The 

configuration to be found most advantageous will be investigated in further 

detail. The three configurations to be considered are the following: 

a. a lead-lag circuit to be inserted between the pilot and the vehicle, 

no internal control loop (see Figure 26A); 

b. Internal loop with rate feedback only (see Figure 26B); 

c. Internal loop with combined attitude and rate feedback (see Figure 26C). 

Configuration A is actually an open loop compensation, and the response to 

a disturbance moinent develops uninhibited.  Among the three configurations this 

makes the task of the pilot the most difficult. 

In configuration B the effect of the rate feedback is to slow down the di- 

vergence . With increased damping provided by the rate feedback, the unstable 

root moves toward the origin» However, even infinite inner loop gain cannot move 

this root into the region of stability for unattended operation. 
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It should be mentioned that. If there were no additional lag in the 

control, we could count on the pilot to provide lead sufficient to pull the 

right hand side root over into the region of stability. However, as pointed 

out earlier, we must expect a lag in the development of a part of the control 

moment.  Considering this additional effect, we would be left with only a 

narrow range of pilot gain for stability, if any.  This approach would be 

likely to lead to a highly critical design and would leave no margin for 

absorbing the inaccuracies to be expected in the design information. 

Configuration C is more advantageous.  The zero of the transfer function 

of the inner loop can be placed on the left hand side of the real axis with- 

out any contribution from the pilot» This is the combined effect of attitude 

and rate feedback. Then the vehicle which confronts the pilot can be made 

stable in attitude.  The nature of the control which he exercises changes 

from moment control to attitude control. Using this approach, we count on 

the pilot's adaptability only in order to counteract the effects of the 

presently unknown additional lag and inaccuracies in the design information. 

A single vertical gyroscope can provide attitude signals for both the 

pitch and the roll control feedback loops.  This is a very reasonable price 

for the advantage of Configuration C.  Therefore this is chosen as the sug- 

gested basic feedback configuration for the attitude stability augmentation 

of the ground effect machine. 

The transfer function of a feedback path (Figure 26c) which consists of 

an attitude gyro and a rate gyro, can be expressed as: 

G>(r=  /Xp  \ ^ ■+  S  \pj where   \f=   = ~ij— 

This Indicates that the location of the zero ( S= — ^r  ) can be changed by 
IF 

adjusting only the rate feedback gain, /\ ^ .  For an adjustment of the loop 

76 



gain, either /\c can be changed, or else the attitude feedback gain, .AF , 

and the rate feedback gain,  A« ,  must be changed in the same proportion. 

One objective of the design is that the product, /Ac Ap  be as large as 

possible. This is because the response to disturbance moments is diminished 

almost in proportion, without any contribution from the pilot. 

It has been shown previously that the left hand side pole, S| , of the 

attitude transfer function, G© , (Equation 83) does not change much 

throughout the useful height range. This suggests that the feedback time 

constant, |<r = /^R /AF   > can ^oe  kept constant so as to approximately 

cancel  S!  at all heights:   "Tp = — (-^-, J 

The inner loop gain and the control system bandwidth depends to a large 

extent on the additional control lag time constant,  ic • We can arrive at 

an estimate of the inner loop gain from the following considerations.  In 

order to obtain a simple picture, let us assume that we have managed to cancel 

the root,  S4  , and, therefore, we are left with two transfer function poles: 

the unstable right hand side GEM pole,  S2 >   and the control lag pole 

"Sc = — fTc.    '    ^s  a criterion for the gain of the simplified inner loop 

we suggest a damping ratio, ^  =  T^     , as a convenient and reasonable 

compromise.  Much higher damping is not easy to use because near critical 

damping ( £7= l.O ) the roots move relative rapidly with any change in gain. 

We are not able to be exact In specifying the gain. A much lower damping 

would not provide a sufficient margin of stability. Although, according to 

experience, it might be expected that the pilot could probably handle a smaller 

margin of stability, we wish to stress again that we do not suggest basing the 

design criteria on the limits of the pilot's capability. 

Using our simplifying assumptions, and writing AC/M-L-ST ^= -'^0 Sc/fs— S ^ 

we arrive at the following block diagram for the Inner loop: 
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-MX) A          *. -Ac Sc /i ( 3 

P (S-S,)Cs-S2.)(S-Sc) 

/'A       /       NCr-        <r-\       U— ]   - i/Ws.^s-s.)   p- 

The characteristic equation of the closed loop is 

S7- CS2^Sc)s -V SzSc + ^^  -# «  O 

Since the roots corresponding to a damping of -j^r        must be on the 

lines enclosing an angle of ^5° with the negative real axis, we can find the 

inner loop gain for this damping by substituting S- —C3"-*-i.ai=--cr-+^<T' 

in the characteristic equation. We eliminate (J     from the two equations ob- 

tained for the real and imaginary parts, both of which must become zero for 

the same G* . We then obtain: 

Ac A*  =    ^s'sc W^t] (86) 

A measure of the bandwidth of the inner loop is \<j\=   -—^— — (rad/sec). 

These results indicate how strongly the control lag pole,  5c >   influences the 

adjustment of the inner loop gain. Examining Equation 86, we find that if 

ISc 1> A  ISzlmo-x. ,   the influence of the change of  S2. (l-e., of the moment 

derivative) on the desired inner loop gain is fairly small (less than 25$). 

This means that if the ratio of the control gain and the control lag root 

— ^/Sc- Ac"Tc.  , were to remain constant throughout the height range, our 

choice of feedback configuration and dynamic performance criteria would probably 
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satisfy all practical purposes with a fixed feedback gain, /QF  >  and a fixed 

rate feedback, AR . However, the fact that the desired feedback gain, /\(r , 

is inversely proportional to /\c T^  indicates that we should provide a variable 

gain. 

Since the variations of the control parameters influence the controllability- 

even if no feedback is used, it would seem advantageous to provide for changes so 

that  /\c would remain nearly constant. That is to say, the moment versus stick 

displacement relationship should not vary appreciably throughout the height range. 

Considering the very close relationship between height and throttle setting for 

a particular configuration it seems feasible that this "automatic" gain' adjust- 

ment could be provided purely mechanically by changing a linkage-arm ratio by 

means of the throttle. It is then conceivable that fixed feedback gains could 

be used to provide satisfactory dynamic characteristics.  Another advantage of 

this approach is that the gain adjustment would be an open loop adjustment. 

This eliminates the problems of measuring height and obviates any problem of 

dynamic coupling between the attitude and heave modes through the automatic 

control.  It may, however, be necessary to provide for some adjustment in the 

gain control to compensate for large variations of the load. 

It may also be pointed out that, if necessary, an additional lead-lag com- 

pensation could be used in the inner loop in order to increase its bandwidth 

and make it "tighter" by applying higher loop gain. Unfortunately this is not 

immediately possible in the absence of information available about the vari- 

ation of the control system parameters, /Ac and  \^ .  In the present state 

of the art, therefore, "tuning" of an experimental autopilot throughout the 

height range In hovering Is necessary In order to find out about the effect of 

the height dependence of the control parameters.  Since the proposed Inner loop 

79 



provides stability In attitude by itself, such tests can easily be carried 

out by checking moment-pulse responses. These can be measured by recording 

the att itude gyro output. 

The previous discussion has been based on several assumptions and simpli- 

fications.  It is appropriate to discuss the effects of inaccuracies in these 

assumptions on our conclusions. 

In our simplified approach we considered three real roots:  the two 

roots S, and S2. of the GEM attitude freedom and a control lag root, SJ, . 

We have arbitrarily chosen S| to be approximately cancelled by the feedback 

zero because this choice offered the possibility of a fixed rate gyro gain. 

If  Sc should turn out to be nearly constant throughout the height range, it 

could be cancelled instead.  It is definitely advantageous, however, to cancel 

the root nearest the origin.  It should be kept in mind that the GEM roots S) 

tnd  S^ would be much closer to the origin in the case of any practical 

full scale design than they are for the eight foot model. The relative radius 

of gyrati. i of a practical machine would be larger than that of our model.  In 

r. our case /ro, =2.5 ( Pa- = radius of gyration), whereas in a practical 

realistic.  With the value VTV = 2.0 and design ^/x^a.  "^  2.0 seems more 

diameter of ^0 feet instead of eight feet, the GEM attitude roots would be 2.8 

times closer to the origin than the roots ^f our test model (if the relative 

nozzle area is kept the same).  It would be cL'.fficult to decide whether  Si 

or 5c. would be closer to the origin.  The control lag can be expected to in- 

crease with size but to decrease j x" the total head pressure is increased. 

The following practical procedure for optimizing the location of the feed- 

back zone can be suggested.  As a first approximation locate the zero, (i.e., 

adjust the rate gyro gain) with the assumption that the relative damping ratio 
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does not change with size, i.e., use a root locus plot similar to Figure 23 

hut with the scale changed according to the size and the  /r<i.  ratio. 

Adjust the feedback gain, /Ap , according to Equation 86 and check the pulse 

response at several heights. Readjust, /\f  , for approximately critical 

damping. Now change the rate feedback (i.e., the zero location) and check 

for uniformity of the response over the height range. Check also whether a 

higher feedback gain can be applied for the same damping.  Change the rate 

feedback in the other direction and repeat. A relatively short test should 

lead to an optimum location of the feedback zero. Now keeping this zero con- 

stant, one can establish experimentally the way in which the feedback gain 

should be changed in order to compensate for the change in the control pa- 

rameters by adjusting for approximately the same damping at all heights.  Since 

the height is very closely related to the throttle setting and since high accu- 

racy is not a requirement, the gain change could be most easily instrumented by 

gearing appropriate nonlinear gain potentiometers for the pitch and roll feed- 

back to the throttle. 

We should like to emphasize again the important role of the control lag. 

We can conclude that, if this lag can be avoided, a significantly tighter inner 

loop with a considerably larger bandwidth could be obtained or. If such Improve- 

ment is not needed, the elimination of the attitude feedback and the application 

of rate feedback alone could be considered.  It may be that the vehicle designer 

can exercise some control over this feature of the machine. 

We have, in addition, neglected some singulatltles of the Inner loop. 

We assumed that the servo motor transfer function poles are far enough removed 

so that their effect on the dynamics of the controlled vehicle In the critical 

area Is negligible. We have shown that for practical machines the dominant poles 
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are much closer to the origin than those of our eight foot test model, so that 

this assumption is certainly justified. We have further neglected any effect 

of dead zone or backlash in the controls.  This would be very difficult to con- 

sider, unless a specific design was analyzed. We have also, however, neglected 

one somewhat favorable singularity.  This is the zero which appears because, 

presumably, only part of the control moment is lagging. If we write the con- 

trol transfer function in the form 

Gc = Ao,+  A«_ =   AcAc^SA..Tc = A    ,. s (AcVA^-Tc 
^    i-^-sTc      \+ sTc \-v sTc 

where /\c —/\c.| ■+ /\ C7.     is the total static control gain, we can see that 

the control zero is /Acyy^i  times as far from the origin as the control 

pole.  It can be expected that the lagging part will be larger if the largest 

part of the weight is supported by the base pressure and pressure differentials 

are responsible for the largest part of the moment. The control zero can, 

therefore, be expected to come closer to the control pole with increases in 

height, but it could reach it only if the full control moment was to develop 

without delay.  Only near the upper limit of the useful height range could 

favorable effect of this zero be expected to be noticeable.  This should actually 

have no influence on the design. 

We have considered the control of the GEM in the vicinity of zero attitude 

angle, and we have shown that, in this case, the coupling between the attitude 

and the heave degrees of freedom can be neglected.  These assumptions are quite 

valid for hovering.  Up to now, we have discussed the synthesis of the control 

system for hovering only; we now have to discuss the performance we can expect 

of our system in forward flight, together with changes or additions, which seem 
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necessary.  Since there is little information available, at the present time, 

concerning the stability derivatives in forward flight, we shall not be able 

to make quantitative predictions as in hovering.  We wish to emphasize that 

we are concerned here only with the control of a GEM at low speeds. The use 

of more or less conventional aerodynamic surfaces for control is not con- 

sidered because of the wide variety of possibilities and because of the ex- 

istence of already well established methods for the analysis of such 

situations. 

Let us first consider forward flight with the machine in a level attitude. 

This situation has been discussed in the section concerning forward flight. 

From the point of view of our control system we have to consider two distinct 

problems. 

The first problem arises because, as the velocity Is increased, an in- 

creasing moment is acting on the GEM. Rather than to put the burden of counter- 

acting this moment on the control system described so far, it is advantageous to 

counteract at least a large part of this moment Independently of the automatic 

control system.  This could be achieved, for example, by allowing for a moment 

arm for the auxiliary thrust vector, or, alternatively, by gradually shutting 

off the jet at the front edge with increasing velocity.  The latter solution 

seems more desirable because it tends to eliminate the moment rather than fight- 

ing it. Also, some additional lift may be gained by adding some of the mass 

flow saved in the front to the rear edge.  The disadvantage of this approach 

is the more complicated control system. 

After the problem of trimming the steady state moment has been solved, we 

still face a second problem:  the changes in stability and control derivatives 

with velocity. Because of the scarcity of quantitative information, an empirical 

approach with an experimental autopilot is suggested.  This is feasible with the 
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proposed feedback system since pulse responses can be used for the tests. 

Once the desired static ;control gain versus velocity characteristics are es- 

tablished, we can use an approach to the mechanization similar to the one 

already employed for the changes in height. The steady state velocity is 

closely related to the throttle setting of the auxiliary thrust source, there- 

fore as a first approach, the gain adjusting potentiometers could be simply 

geared to this throttle. However, it can be expected that for fast accelera- 

tions and decelerations the throttle setting could lead the velocity too much 

to provide smooth control during the acceleration.  If this is the case a lag 

should be inserted between the throttle and the control gain potentiometers. 

Concerning the effect on the controlled system of the coupling between the 

attitude and the translational freedom, the following argument can be made. 

Since we have a rather tight attitude control only small deviations from the 

zero attitude angle are to be expected, and corrections in attitude will occur 

fast enough so that no appreciable change in velocity can occur.  In other 

words, the forces coupling the translational freedom to the attitude mode are 

kept small by the feedback control.  We can say the same thing, however, about 

the moments occurring due to velocity changes and gusts; these must be con- 

sidered as disturbance inputs to the attitude control.  The coupling, however, 

can be considered to be practically unilateral, and no additional stability 

problems are to be expected. 

There are two practical situations In which deviation from zero attutide 

angle must be desired.. One Is banking In a turn, the other Is enhancing de- 

celeration and acceleration by tilting the vehicle in pitch.  Since we assume 

that the height at which the GEM flies Is determined by the obstacle to be 

cleared, tilting can be used only if reserve power Is available so that the 
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lowest edge remains at the reference height.  It is ohvious that only small 

angles can be achieved in practice. Because of the attitude feedback the equi- 

librium angle can be commanded by the control stick input. It may be expected 

that, for the practical small angles, the stability derivatives do not change 

appreciably. The coupling between the heave and the attitude mode is small 

with small angles, and, since the heave mode is inherently stable and damped, 

no severe stability problems are expected in connection with small tilt angles. 

In summary, the relatively simple autopilot devised on the basis of a 

fairly detailed analysis of the hovering case can be expected to also work 
> 

satisfactorily in forward flight, after it has been provided with suitable 

automatic gain adjustments.  In the present state of the art, the gain adjust- 

ment functions have to be established experimentally.  Once these functions 

have been established they can be permanently set, and there is apparently no 

need for adaptive control. Great precision in the synthesis of closed loop 

system dynamics is not required since we can count on the pilot's ability to 

handle a considerable range of vehicle characteristics. 
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6. CONG ms IONS 

As Is usually the case when one attempts to synthesize a feedback 

control system, the large part of the effort is this investigation went 

into the analysis of the system to be controlled.  In the course of an 

effort to isolate the most significant problems, the stabilization of 

the ground effect machine in attitude was singled out.  In the theoreti- 

cal approach the principle of the balance of momentum changes and forces 

was used. Derivations of expressions for the undamped natural frequency 

and the damping in heave as well as for the static attitude moment yielded 

results which reveal the basic mechanisms influencing these parameters and 

which are in good agreement with experimental results.  This agreement es- 

tablished a certain amount of confidence in the theoretical results so 

that they could be used In the preliminary design of a feedback control 

system. A discussion indicated the influence of different physical pa- 

rameters as well as the Influence of scaling on the theoretical results. 

Especially Interesting is the form of the result for the attitude 

moment derivative which Indicates the sources of both the stabilizing 

and the destabilizing static moments.  Both of these moments can be 

attributed to losses in the base area:  the stabilizing moment to a 

loss in base pressure (due to vortices and other possible causes), the 

destabilizing moment to the loss of momentum of the crossflow in the base 

area (primarily due to dissipation).  The change of the balance of these 

moments against each other causes the crossover from static stability to 

instability.  This result has been obtained by way of some rather crude 

approximations; nevertheless, it seems to provide a frame into which 

more refined analysis of the future can be expected to fit. 
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Experiments were carried out with an eight foot diameter model to 

yield information about the static and the dynamic stability derivatives 

in a hover condition.  In general, satisfactory agreement with the theo- 

retical results was obtained.  However, from the measurement of attitude 

damping, unexpected results were obtained for which no theoretical expla- 

nation could be given.  These tests indicated the presence of a degree of 

damping sufficiently large to Influence considerably the preliminary de- 

sign procedure of the feedback system.  This influence seems significant 

enough to suggest exploration of the effect of scaling on attitude damping. 

It was not explored in the present study. 

In the course of determining design principles for the automatic sta- 

bility augmentation, it was decided that the adaptability of the human 

pilot could be effectively employed. This, and the consideration of dis- 

turbance moments, leads to the selection of a combined attitude and rate 

feedback control system with open loop gain adjustments to take care of 

the significant effects of flight condition variations. 

The preliminary synthesis brings out the significance of the moment 

control lag and the variation of the moment control effectiveness with 

height.  Because of the significant role of these parameters the study of 

the attitude control dynamics of practical GEM control systems can be sug- 

gested as a worthwhile subject for future investigations.  A series of 

arguments leads to the conclusion that the suggested feedback control con- 

figuration could be expected to perform satisfactorily in hovering and in 

forward flight, up to speeds where aerodynamic control surfaces become 

effective.  This is the case even though very little information is availa- 

ble, at this time, concerning the variation of stability parameters in 
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torward  flight. Therefore, the installation of an experimental auto- 

pilot built according to the preliminary design described in this re- 

port, and installed in a piloted flying model, is suggested as the 

next important step in the study of automatic stability augmentation. 

It should be kept in mind that this report is concerned only with 

the overland characteristics of the ground effect machine.  Experimental 

over-vater studies have indicated a different behavior of the stability 

derivatives.  The suggested feedback control configuration, however, is 

able to cover such a wide range of characteristics that a different gain 

adjustment program can be expected to provide satisfactory stability 

augmentation over-water also.  Switching from one set to another set of 

gain adjusting potentiometers on the part of the pilot would probably be 

preferred to an automatic adaptive control system because of the faster 

adaptation.  The application of adaptive control principles might be 

needed to replace the human adaptlvlty if remote control of ground effect 

machines were contemplated. 
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APPENDIX A 

EFFECT OF GYROSCOPIC COUPLING 

In order to be able to estimate the effect of gyroscopic coupling, 

let us investigate the following case. Let us assume that a sinusoidal 

oscillation takes place around the roll axis, with some frequency COxo , 

which cannot be easily controlled by the pilot.  Let the amplitude of 

this oscillation be /\x • A sinusoidal gyroscopic moment around the 

pitch axis induces an oscillation of the same frequency with an ampli- 

tude Au, . The amplitude ratio A«*//^y can be considered as a practi- 

cal measure of the significance of the gyroscopic coupling.  It can be 

easily shown that 

Ay 1"* SX* (A-l) 
Ax   '    Tr   ^»xo 

where  J-j; is the moment of inertia of the propeller and shaft aligned 

with the Z,axis,  -TIx  is the angular velocity of the propeller and X*. 

is the moment of inertia of the machine around the **   axis. If we 

choose  COxo =  2rr/sec as the "input" frequency. Equation A-l can be 

written as 

A ±. = 3x t*- (A-l-a) 

where -W  is the propeller speed in revolutions per second.  If we sub- 

stitute in this expression the measured values of the tested eight foot model, 

"Jk = .07 (ft. lb. sec.2); "X^, = 13.h  (ft. lb. sec. ) we find with the max- 

propeller speed(i(-350 RPM) A*$ If\H,    = 0.38. This amplitude ratio is not imum 

nee lip-lb le , 
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The following discussion indicates the effect of scaling on the gyroscopic 

coupling. For two machines of similar shape and weight distribution, but differ- 

ent in size, the moments of inertia differ by an approximate ratio 

where  R-i and  r^ are the specific loads in lb/ft. .  If the index 2 

marks the larger machine, the moment of inertia ratio increases by more than 

the fourth power of the diameter ratio if the larger machine also has a larger 

specific loac  r\_ • 

In order to make an estimate of the increase in the moment of inertia of 

the propeller, the horsepower requirement must be considered. The horsepower 

required is proportional ( indicated by i^-' ) to the product of the mass flow 

and the square of the jet velocity, 

UP ^ A mw ^    ~  SN PT
3/ä (A-3) 

where  Sivj is the nozzle area,  P-p the total pressure,  ^"3" is the jet 

velocity and VVt-j^  is the total mass flow of the jet. By definition the 

lift is \_=Vy» AT-fo,- (where /\    is the augmentation factor and JTOT is 

the total jet momentum).  From this expression we obtain  K_ S f^>   A Sts» PV 

by using  PL. 
=  <;   an(i t^16 fact that T ^  SVJ Pf  . We can use this 

o 

relationship to eliminate T'-J- from the horsepower relationship giving, 

^P~ {If   {-If   S 
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a   3 
The propeller horsepower can be scaled approximately as V\P*J  Rp^—, V. ■ 

or as 

if the tip speed, is unchanged.  Comparing the last two relationships we 

find that the propeller diameter should be proportional to the GEM di- 

ameter in the case of a circular machine, if the scaling is made for the 

same augmentation and specific load. We assume that the mass of the pro- 

peller increases only approximately with the square of the diameter be- 

cause relatively less structural strength is needed because of smaller 

RPM of the larger propeller. Then 

)x.Z /v-> (AA2 r^wp^-f (A-6) mmm Jx, 

Applying the formulas A-6 and A-2 to A-l-a 

A-/A..     VAJ ^^jy xjr   vteupui r>. 
(A-T) 

Using this formula with r*1/ A2    =   1 the gyroscopic coupling of the 

Princeton twenty foot model could be characterized from the data of the 

eight foot model with 

Actually, however, the propeller diameter is larger by a factor of only two 

and the necessary horsepower is obtained by means of a larger tipspeed.  This 

leads to a corrected estimate of A^x/j\Aa "^  0.18.  Considering that our 

fixed frequency COv0 = Ä-tT/sec. is rather fast for an attitude oscillation. 

9^ 



this  /V42/Axz ratio indicates a comparatively small effect of the gyro- 

scopic coupling. This is confirmed hy the pilot's opinion. According to 

Equation A-7 this situation can be expected to remain unchanged as long as 

the Increase of the specific load is not larger than the square root of the 

increase in diameter. 

This discussion leads to the following general conclusions; 

a. The significance of gyroscopic coupling in practical machines can 

be considered practically negligible except for single rotor ground effect 

machines with very large specific loads. 

b. The scaling of the gyroscopic coupling must be considered if the 

dynamics of a single propeller ground effect machine are to be Investigated 

on a scaled model. 

c. In the case of large specific loads, gyroscopic coupling can and 

should be practically eliminated by using a number of contrarotating 

propellers. 
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APPENDIX B 

EXPERIMENTAL INVESTIGATION 

The discussion which follows describes the model used for the tests, 

the testing procedure and the results of the tests. Because of limitations 

in the length of time available, no tests were made in forward flight. 

Model and Test Setup:  The model on which the experiments were carried 

out is a circular, annular jet ground effect machine with a diameter of 8 feet 

and a weight of IJO pounds. The jet Is one inch thick and is inclined Inward 

at an angle of kj  degrees.  Power is supplied by a four-blade propeller driven 

by a three-phase, 115 volt electric motor. The propeller is 2k  inches in 

diameter. Power to the motor is controlled by means of a Varlac located at 

the control station. 

The model is attached to a rig, as shown in Figure 28, so that it has 

two degrees of freedom. The bearings supporting the model are located on an 

axis passing through the center of gravity. This allows freedom in pitch 

about this axis only. The bearings. In turn, are supported by the yoke shown 

in Figure 27. A vertical shaft from the yoke extends through a sleeve in the 

main rig.  This allows freedom of motion in the heave mode. The model can be 

locked in either heave or pitch by means of notched shafts extending from the 

yoke in the case of the pitch lock, and from the main rig in the case of the 

heave lock (see Figure 2").  The notches are made at intervals of one degree 

in pitch and one inch in heave. A pneumatic release system effects the re- 

lease of the model in either pitch or heave or both with power on.  (Springs 

which can be seen In the Figure pull the notched shafts free when released.) 

Heave and pitch motion are read by means of potentiometers. Referring 

to Figure 27, the pitch pot may be seen, with its linkage, at the base of 

the yoke.  The pot is rigidly attached to the yoke while its wiper arm Is free 



to move with the model. The heave pot may be seen in Figure 2J  just above 

the yoke at the apex of the linkage connecting the main rig and the yoke. 

This pot is rigidly attached to the main rig while its wiper arm is free to 

move with the yoke. The wiper voltages are fed into a Sanborn recorder at 

the control station and also into meters for direct reading. 

The weight of the machine can be increased by attaching copper weights 

to the structure and can be decreased by means of a spring attached to a 

hoist above the model. The spring is sufficiently soft so that it has only 

a small effect on the period of the transient oscillations in heave.  Cor- 

rections are made to account for the fact that the mass does not decrease 

when the spring is used to reduce the weight. 

Static moments are measured by means of a strain guage which is bonded 

to a beam attached to the model at one end and to a cable which is suspended 

fromabove at the other end. Weights are added to this end of the model so 

that all moment readings are positive. The signal is read on the output of 

a Sanborn amplifier at the control station. 

Testing Procedure;  Measurements were made to show the variation of the 

lift force with height for various constant values of the motor RPM. Weight 

was both added to and subtracted from the basic weigh In 20 pound Increments. 

For each weight, the resulting hovering height was recorded at three specific 

values of the motor RPM.  The results of these measurements are shown in 

Figure 2. The curves of Figure 3 show the effect of small attitude changes 

on the lift. 

A series of experiments was conducted to determine the dynamic behavior 

of the model in heave. To accomplish this, the model was locked in pitch so 

that It had only vertical freedom.  Because of the presence of some flexibility 
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in the supporting structure the model tended to exhibit some attitude change 

with variations in the power supplied to the propeller; however, these changes 

were usually small and were accounted for whenever possible. 

The tests were conducted as follows:  The model was raised to a certain 

height, the attitude locked at a certain angle and the model weight set by 

either adding weights or increasing the spring force. The propeller was then 

brought up to an RPM which corresponded to an equilibrium height either some- 

what greater or somewhat less than the one at which the model was set, The 

model was then released and the resulting transient was recorded. The fre- 

quency and damping ratio were then determined from the recorded trace. System- 

atic variations were made in the model weight, pitch angle, equilibrium height 

and also in the size of the input. It was found that inputs of about plus or 

minus 1.5 inches were a good compromise.  (Smaller inputs did not give a suf- 

ficient number of readable overshoots for determining the frequency and damping, 

and larger inputs would run the risk of causing nonlinear behavior). The re- 

sults of the tests are shown in Figure 6 and in Figures 9 to 12. 

Pitch Freedom Tests:  The desired information in the pitch degree of free- 

dom was somewhat more difficult to obtain because of the fact that the model 

was unstable in pitch at all but the very lowest heights.  Essentially two 

measurements were made at each height.  The variation of pitching moment with 

pitch angle was recorded, and the variation of pitch damping was determined 

separately. In each case the model was rigidly fastened at a given height 

from the ground.  To determine the effect of variation of the machine weight, 

each test was made at three different values of the motor RPM.  This was equi- 

valent to varying the weight of the machine since it had no vertical freedom. 
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As described previously, the moment measurements were made using a strain 

gauge which was bonded to a beam at the edge of the machine. The machine was 

set at the desired height, the cable adjusted to give the desired pitch angle 

and then the propeller was brought up to speed. Moment readings were taken 

at each of three previously determined RPM readings. The results of these 

tests are shown in Figure 21. In all of the moment measurements there was 

a considerable amount of fluctuation present and each of the readings repre- 

sents an average taken over several seconds of the motion of the needle in- 

dicating the strain gauge output. The fluctuations appeared to be due to the 

unsteadiness of the flow beneath the model. 

Pitch damping was determined by a test in which a fixed moment was applied 

to the model at different height and RPM settings. The time history of the 

pitch angle was recorded until the model struck the ground. The moment was 

applied in such a manner as to insure that the pitch angle varied through the 

linear portion of the moment curve. Assuming that this motion could be des- 

cribed by a second-order differential equation in which the Inertia and spring 

force (negative) were known, curves showing the pitch angle response to a step 

input as a function of damping ratio were plotted.  From these curves the damp- 

ing ratio corresponding to the measured pitch angle could be found.  The varia- 

tion of the damping ratio with height is shown if Figure 22. 
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